邱祥彪, 杨晓明, 孙建宁, 王健, 丛晓庆, 金戈, 曾进能, 张正君, 潘凯, 陈晓倩. 高空间分辨微通道板现状及发展[J]. 红外技术, 2024, 46(4): 460-466.
引用本文: 邱祥彪, 杨晓明, 孙建宁, 王健, 丛晓庆, 金戈, 曾进能, 张正君, 潘凯, 陈晓倩. 高空间分辨微通道板现状及发展[J]. 红外技术, 2024, 46(4): 460-466.
QIU Xiangbiao, YANG Xiaoming, SUN Jianning, WANG Jian, CONG Xiaoqing, JIN Ge, ZENG Jinneng, ZHANG Zhengjun, PAN Kai, CHEN Xiaoqian. Status and Development of High Spatial Resolution Microchannel Plate[J]. Infrared Technology , 2024, 46(4): 460-466.
Citation: QIU Xiangbiao, YANG Xiaoming, SUN Jianning, WANG Jian, CONG Xiaoqing, JIN Ge, ZENG Jinneng, ZHANG Zhengjun, PAN Kai, CHEN Xiaoqian. Status and Development of High Spatial Resolution Microchannel Plate[J]. Infrared Technology , 2024, 46(4): 460-466.

高空间分辨微通道板现状及发展

Status and Development of High Spatial Resolution Microchannel Plate

  • 摘要: 微通道板(MCP)是超二代、三代微光像增强器中的核心元件之一,其空间分辨能力对于微光像增强器分辨力、传函、光晕(Halo)等性能有重要的影响。基于最先进的超二代和三代像增强器所采用MCP的新技术发展,整理国内外已经开展的研究成果报道,从像增强器成像过程中与MCP直接相关的光电子入射至MCP输入面、MCP电子倍增、倍增电子图像输出3个阶段进行系统梳理分析,明确先进像增强器对于微通道板高空间分辨的具体性能需求。提出国产MCP的发展方向展望:未来几年研制孔径5 μm、开口面积比70%左右、输出电极优化的MCP并批量应用;应用于超二代像增强器的MCP需要开展小孔径扩口以及电子减速膜等新技术研究,使MCP开口面积比达到90%以上、像增强器传函与对比度性能显著提升;应用于三代像增强器的MCP需要开展低放气、低离子反馈MCP研究以支撑无膜三代像增强器的研发,抑制Halo、提高信噪比,在实现无膜MCP的基础上,扩口技术、输入增强膜层技术、电子减速膜等MCP技术均有应用于三代像增强器中的潜力。

     

    Abstract: Microchannel plates (MCP) are the core components of super GEN Ⅱ and GEN Ⅲ low-light-level image intensifiers. The spatial resolution has a significant effect on the resolution, transmission, and halo performance of low-light-level image intensifiers. The research results at home and abroad are reviewed based on the new technology development of the MCP used by the most advanced super GEN Ⅱ and GEN Ⅲ intensifiers. The specific performance requirements of advanced image intensifiers for the high spatial resolution of microchannel plates are verified by a systematic analysis of the three stages of photon input to the MCP surface, MCP electron multiplication, and multiplication electron image output in the imaging process of the image intensifier. The development trends of domestic MCP is put forward: the MCP with an aperture of 5 μm, an opening area ratio of approximately 70% and optimized output electrode will be developed and applied in batch in the next few years. The MCP applied to the super GEN Ⅱ image intensifier needs to conduct research on new technologies such as a small aperture funnel MCP technology and electron deceleration film, so that the MCP opening area ratio can reach more than 90% and the modulation transfer function and contrast performance of the image intensifier can be significantly improved. MCP with a low outgassing and low ion feedback are needed in the research to support the unfilmed GEN Ⅲ, which can inhibit Halo and improve the signal-to-noise ratio. Based on the unfilmed intensifier, the funnel MCP technology, input enhancement film technology, and electron deceleration film technology have the potential to be used in GEN Ⅲ intensifier.

     

/

返回文章
返回