基于深度残差UNet网络的电气设备红外图像分割方法

Deep Residual UNet Network-based Infrared Image Segmentation Method for Electrical Equipment

  • 摘要: 红外图像处理是实现电气故障诊断的有效手段,而电气设备分割是故障检测的关键环节。针对复杂背景下红外图像电气设备分割难问题,本文采用深度残差网络与UNet网络相结合,深度残差网络替代VGG16对UNet网络进行特征提取和编码,构建深度残差系列Res-Unet网络实现对电气设备的分割。以电流互感器和断路器两种电气设备红外图像分割为例测试Res-Unet网络分割效果,并与传统的UNet网络和Deeplabv3+网络进行对比。通过对数量为876的样本进行测试,实验结果表明,Res18-UNet能够准确地分割电气设备,对电流互感器和断路器的分割准确率超93%,平均交并比大于89%,且分割准确性优于UNet及Deeplabv3+网络模型,为实现电气故障智能诊断奠定基础。

     

    Abstract: Infrared thermal image processing is an effective method for detecting defects in electrical equipment. Aiming at the problem of electrical equipment segmentation in infrared thermal images with a complex background, in this study we propose a deep residual UNet network for infrared thermal image segmentation. Using a deep residual network to replace VGG16 to perform feature extraction and coding for the UNet network, a deep residual series UNET network was constructed to segment electrical equipment. To validate the effectiveness of the Res-UNet network, infrared images, including current transformers and circuit breakers, were used to test the segmentation results and were compared with the traditional UNet and Deeplabv3+ networks. The networks were tested using 876 images. The experimental results show that RES18-UNET can accurately segment electrical equipment; the segmentation precision of current transformers and circuit breakers is greater than 93%, and the mean intersection over union (MIoU) is greater than 89%. Our method obtains more accurate segmentation results than UNet and Deeplabv3+, setting the basis for intelligent diagnosis of electrical faults.

     

/

返回文章
返回