一种移动平台红外搜索跟踪系统的稳定控制方法

熊辉, 李锐华, 刘海, 阎歆婕, 舒骏逸, 郑婕, 冯建伟, 冯若涵, 林宇, 吴佳俊, 林丹丹, 宋治杭, 张晋

熊辉, 李锐华, 刘海, 阎歆婕, 舒骏逸, 郑婕, 冯建伟, 冯若涵, 林宇, 吴佳俊, 林丹丹, 宋治杭, 张晋. 一种移动平台红外搜索跟踪系统的稳定控制方法[J]. 红外技术, 2024, 46(6): 634-645.
引用本文: 熊辉, 李锐华, 刘海, 阎歆婕, 舒骏逸, 郑婕, 冯建伟, 冯若涵, 林宇, 吴佳俊, 林丹丹, 宋治杭, 张晋. 一种移动平台红外搜索跟踪系统的稳定控制方法[J]. 红外技术, 2024, 46(6): 634-645.
XIONG Hui, LI Ruihua, LIU Hai, YAN Xinjie, SHU Junyi, ZHENG Jie, FENG Jianwei, FENG Ruohan, LIN Yu, WU Jiajun, LIN Dandan, SONG Zhihang, ZHANG Jin. Stability Control Method for Infrared Search and Track System Based on Mobile Platform[J]. Infrared Technology , 2024, 46(6): 634-645.
Citation: XIONG Hui, LI Ruihua, LIU Hai, YAN Xinjie, SHU Junyi, ZHENG Jie, FENG Jianwei, FENG Ruohan, LIN Yu, WU Jiajun, LIN Dandan, SONG Zhihang, ZHANG Jin. Stability Control Method for Infrared Search and Track System Based on Mobile Platform[J]. Infrared Technology , 2024, 46(6): 634-645.

一种移动平台红外搜索跟踪系统的稳定控制方法

详细信息
    作者简介:

    熊辉(1991-),男,工程师,主要研究方向为光电系统伺服控制与驱动,E-mail:xh1270223693@163.com

    通讯作者:

    李锐华(1989-),男,高级工程师,主要研究方向为光电系统总体技术,E-mail:liruihuakm@139.com

  • 中图分类号: TN219,TN820.4

Stability Control Method for Infrared Search and Track System Based on Mobile Platform

  • 摘要:

    基于移动平台的红外搜索跟踪系统已成为新一代光电搜索跟踪系统的主流趋势,小型化和轻量化是其高机动性的保证。载体运动姿态变化耦合的角速度扰动和系统内部力矩干扰将对其搭载的光电载荷视轴稳定控制带来严峻挑战,基于多轴多框架和高精度陀螺反馈控制相结合的传统视轴稳定方法已无法适用。本文针对两轴两框架移动平台红外搜索跟踪系统的光电载荷视轴稳定控制,提出了基于平方PI和Luenberger扰动观测前馈的双速度闭环同阶串级控制方法。仿真和实验表明,相对于传统的单陀螺闭环和双速度闭环稳定控制方法,该稳定控制方法有效提升了载体运动低频扰动下的视轴稳定精度。1°/1 Hz扰动下,仿真稳定精度达到2.7817 μrad,实验稳定精度达到35.85 μrad。1°/2 Hz扰动下,仿真稳定精度达到38.199 μrad,实验稳定精度达到119.1 μrad。最终,利用本文提出的稳定控制方法,两轴两框架移动平台红外搜索跟踪系统有效克服了行进间载体运动姿态变化耦合的低频角速度扰动,实现了高平稳高动态的光电载荷视轴指向控制性能。

    Abstract:

    Infrared search and tracking systems based on the mobile platform have become the mainstream trend of the new generation in optoelectronic search and track systems, and miniaturization and lightweight guarantee high mobility. The angular velocity disturbance, coupled with the carrier's motion attitude change and internal torque disturbance of the system, raises serious challenges to the optical-axis stability control of the optoelectronic load. The traditional optic-axis stability method based on a combination of multi-axis, multi-frame, and high-precision gyro feedback control, is no longer applicable. In this study, a double-velocity closed-loop same-order cascade control method is proposed based on square PI and Luenberger disturbance observation and feedforward, for the optical axis stability control of the optoelectronic load on a two-axis two-frame mobile platform infrared search and tracking system. Simulations and experiments show that compared with the conventional single-gyro closed-loop and double-velocity closed-loop stability control methods, the proposed stability control method can effectively improve the stability accuracy of the optical axis under low-frequency disturbance of the carrier's motion. Under a disturbance of 1°/1 Hz carrier motion, the stability accuracy of the simulated optical axis improved to 2.7817 μrad and that of the actual experiment improved to 35.85 μrad. Under a disturbance of 1° /2 Hz carrier motion, the stability accuracy of the simulated optical axis improved to 38.199 μrad and that of the actual experiment improved to 119.1 μrad. Finally, using the stability control method proposed in this study, the two-axis two-frame infrared search and track system based on the mobile platform effectively overcame the low-frequency angular velocity disturbance coupled with the carrier's motion attitude change between marching, to realize a highly stable and highly dynamic optical-axis-oriented control performance of the optoelectronic load.

  • 图  1   双速度闭环稳定控制模型

    Figure  1.   Single-axis double-velocity closed-loop stable control model

    图  2   双速度闭环同阶串级控制数学模型

    Figure  2.   Double-velocity closed-loop same order cascade control mathematical model

    图  3   基于平方PI控制的双速度闭环同阶串级控制模型

    Figure  3.   Double-velocity closed-loop same order cascade control model based on square PI controller

    图  4   单PI控制和平方PI控制的定性Bode图

    Figure  4.   Qualitative Bode plots for single PI and square PI control

    图  5   平方PI校正的Luenberger扰动观测器控制框图

    Figure  5.   Control block diagram of Luenberger disturbance observation with square PI corrector

    图  6   本文设计的视轴稳定控制原理框图

    Figure  6.   The optical axis stability control block diagram of our design

    图  7   两种稳定控制方法的扰动响应曲线

    Figure  7.   Disturbance response curves of two stability control methods

    图  8   单PI控制和平方PI控制的开环频率响应曲线

    Figure  8.   Open-loop frequency response curves of single PI and square PI controller

    图  9   1°/1 Hz扰动下基于改进控制结构和不同陀螺外环控制的视轴稳定曲线

    Figure  9.   Optical axis stability curves with 1°/1 Hz disturbance based on improved structure and different gyro outer-loop controller

    图  10   1°/2 Hz扰动下基于改进控制结构和不同陀螺外环控制的视轴稳定曲线

    Figure  10.   Optical axis stability curves with 1°/2 Hz disturbance based on improved structure and different gyro outer-loop controller

    图  11   Luenberger扰动观测前馈加入前后不同扰动下的视轴稳定曲线

    Figure  11.   Optical axis stability curves with different disturbance before and after the feedforward of Luenberger disturbance observation

    图  12   单PI校正和平方PI校正的1°/1 Hz扰动响应曲线

    Figure  12.   Disturbance response curves with 1°/1 Hz disturbance for single PI and square PI corrector

    图  13   单PI校正和平方PI校正的1°/2 Hz扰动响应曲线

    Figure  13.   Disturbance response curves with 1°/2 Hz disturbance for single PI and square PI correction

    图  14   不同算法的扰动响应幅频曲线

    Figure  14.   Magnitude-frequency curves of disturbance response of different algorithms

    图  15   本文稳定控制算法在不同角速度扰动下的稳定性能

    Figure  15.   Stability with different velocity disturbance based on the stability control method proposed in this paper

    图  16   本文稳定控制算法基于100 μrad稳定精度的扰动容限

    Figure  16.   Disturbance tolerance for 100 μrad stability accuracy based on the stability control method proposed in this paper

    图  17   基于六自由度摇摆台的移动平台红外搜索系统视轴稳定实验平台

    Figure  17.   The optical-axis-stability experimental platform of mobile platform infrared search and track system based on six-degree-of-freedom swing platform

    图  18   1°/1 Hz载体运动扰动下的视轴稳定效果

    Figure  18.   Optical axis stability with 1°/1 Hz carrier's disturbance

    图  19   1°/2 Hz载体运动扰动下的视轴稳定效果

    Figure  19.   Optical axis stability with 1°/2 Hz carrier's disturbance

    表  1   俯仰框架基本电气参数

    Table  1   Basic electrical parameters of pitching frame

    Parameters Value Unit
    Moment of inertia 0.014 kg⋅m2
    Armature resistance 14 Ω
    Armature inductance 7.5 mH
    Back-emf coefficient 0.28 V/rad/s
    Moment coefficient 0.28 Nm/A
    Gyro filter frequency 50 Hz
    下载: 导出CSV

    表  2   不同算法作用的视轴稳定精度

    Table  2   Optical axis stability accuracy for different algorithms μrad

    Disturbance Traditional double-closed loop Improved double-closed loop
    Singer PI Square PI Square PI+DOB_PI Square PI+DOB_PI-PI
    1°/1 Hz 1168 30.3 3.744 2.85 2.7817
    1°/2 Hz 2161 223.3 53.68 39.943 38.199
    下载: 导出CSV

    表  3   摇摆台不同扰动条件下俯仰框架的视轴稳定精度

    Table  3   Pitch-optical-axis stability accuracy with different disturbance of swing platform

    Disturbance Single closed-loop/μrad Our method/μrad Decreasing percentage/%
    1°/1 Hz 98.48 35.85 63.60
    1°/2 Hz 394.4 119.1 69.80
    下载: 导出CSV

    表  4   与部分代表性光电系统的稳定精度对比

    Table  4   Comparison of stability accuracy with some representative optic-electric systems

    Electro-optical system Structure Stability accuracy /μrad
    This paper IRST two-axis two-frame 35.85
    Skyball-SA-144/18(America)[15] two-axis two-frame 35
    CLOM(China)[7, 16] two-axis two-frame 40
    618 Institute[17] two-axis two-frame 100
    T6 (China)[15] two-axis two-frame 300
    下载: 导出CSV
  • [1] 刘忠领, 于振红, 李立仁, 等. 红外搜索跟踪系统的研究现状与发展趋势[J]. 现代防御技术, 2014, 42(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201402019.htm

    LIU Zhongling, YU Zhenhong, LI Liren, et al. Status and development trend of infrared search and track system[J]. Modern Defence Technology, 2014, 42(2): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-XDFJ201402019.htm

    [2] 吴晗平. 红外搜索系统[M]. 北京: 国防工业出版社, 2013.

    WU Hanping. Infrared Search System[M]. Beijing: National Defense Industry Press, 2013.

    [3] 熊辉, 林宇, 张雁伟, 等. 一种基于小惯量红外稳定平台的复合电流控制方法[J]. 红外技术, 2021, 43(2): 116-126. http://hwjs.nvir.cn/cn/article/id/ad79c87b-95eb-4f5a-b6ff-92dda5b2dc72

    XIONG Hui, LIN Yu, ZHANG Yanwei, et al. A composite current control method based on small inertia infrared stable platform[J]. Infrared Technology, 2021, 43(2): 116-126. http://hwjs.nvir.cn/cn/article/id/ad79c87b-95eb-4f5a-b6ff-92dda5b2dc72

    [4] 唐涛, 马佳光, 陈洪斌, 等. 光电跟踪系统中精密控制技术研究进展[J]. 光电工程, 2020, 47(10): 3-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010001.htm

    TANG Tao, MA Jiaguang, CHEN Hongbin, et al. A review on precision control methodologies for optical-electric tracking control system[J]. Opto-Electronic Engineering, 2020, 47(10): 3-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010001.htm

    [5] 谢瑞宏. 机载光电平台伺服系统稳定与跟踪控制技术的研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    XIE Ruihong. The Research of Stabilization and Tracking Control Techniques on Airborne Opto-electric Platform Servo System[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2017.

    [6] 姬伟. 陀螺稳定光电跟踪平台伺服控制系统研究[D]. 南京: 东南大学, 2006.

    JI Wei. Research on Servo Control System of Gyro Stabilized and Opto-Electronic Tracking Platform[D]. Nanjing: Southeast University, 2017.

    [7] 方宇超. 光电跟踪稳定平台控制系统关键技术研究[D]. 长春: 长春理工大学, 2018.

    FANG Yuchao. Research on Key Technologies of Control System for Photoelectric Tracking Stabilized Platform[D]. Changchun: Changchun University of Science and Technology, 2018.

    [8] 孔德杰. 机载光电平台扰动力矩抑制和改善研究[D]. 长春: 中国科学院长春光学机密机械与物理研究所, 2013.

    KONG Dejie. Restraints and improvement of disturbance torque of airborne optoelectronic platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2013.

    [9] 魏伟. 高精度机载光电平台视轴稳定技术研究[D]. 长春: 中国科学院长春光学机密机械与物理研究所, 2015.

    WEI Wei. The Research of Optical axis stabilization of the Airborne Photoelectric Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.

    [10] 蔡华祥. 望远镜中跟踪架的扰动补偿及精密控制技术研究[D]. 成都: 中国科学院光电技术研究所, 2016.

    CAI Huaxiang. Disturbance Compensation and Precision Control Techniques of Tracking Gimbal on Telescope[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016.

    [11] 刘京. 基于永磁同步电机的大型望远镜低速伺服系统研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2018.

    LIU Jing. Research on Low-Speed Servo System of Large Telescope based on Permanent Magnet Synchronous Motor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018.

    [12] 唐涛, 杨涛, 黄永梅, 等. 具有延迟特性的FSM系统中PI-PI控制器[J]. 光电工程, 2013, 40(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201305003.htm

    TANG Tao, YANG Tao, HUANG Yongmei, et al. PI-PI controller for the time delay control system of FSM[J]. Opto-Electronic Engineering, 2013, 40(5): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201305003.htm

    [13] 张良总, 杨涛, 吴云, 等. 基于图像测量的Stewart平台双阶控制技术[J]. 光电工程, 2022, 49(8): 220019. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202208006.htm

    ZHANG Liangzong, YANG Tao, WU Yun, et al. Image measurement-based two-stage control of Stewart platform[J]. Opto-Electronic Engineering, 2022, 49(8): 220019. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202208006.htm

    [14] 嵇婷, 纪明, 胥青青, 等. 机载光电稳定平台建模及动态特性分析[J]. 激光与红外, 2021, 51(2): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202102013.htm

    JI Ting, JI Ming, XU Qingqing, et al. Modeling and dynamic characteristics analysis of airborne photoelectric stabilization platform[J]. Laser & Infrared, 2021, 51(2): 206-211. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202102013.htm

    [15] 任维. 运动平台下光电跟踪系统的抗扰控制技术研究[D]. 成都: 中国科学院光电技术研究所, 2020.

    REN Wei. Research on Anti-interference Control Technology of Optoelectronic Tracking System Under Moving Platform[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020.

    [16] 王正玺. 机载光电侦察平台高精度视轴稳定及像移补偿控制技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2019.

    WANG Zhengxi. Research on High Precision LOS Stabilization and Image Motion Compensation Control Technology of Aeronautical Photoelectric Stabilization Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019.

    [17] 夏先齐. 航空光电稳定平台粗精双稳定控制研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2021.

    XIA Xianqi. Research on Coarse and Fine Dual Stability Control of Aviation Photoelectric Stabilized Platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021.

    [18] 张艳, 张淑梅, 乔彦峰, 等. 基于舰载光电设备参考模型扰动估计的前馈控制[J]. 光学精密工程, 2013, 21(5): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201305016.htm

    ZHANG Yan, ZHANG Shumei, QIAO Yanfeng, et al. Feedforward control based on reference model disturbance observer of carrier-based optoelectronic theodolite[J]. Optics and Precision Engineering, 2013, 21(5): 1213-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201305016.htm

    [19]

    MA Rongqi, WANG Qiang, XIA Yunxia, et al. Disturbance com-pensation of a multiaperture imaging system based on a coupling rotating prism using an improved model compensation control[J]. Applied Optics, 2021, 60(16): 4798-4806.

    [20] 阎歆婕, 林宇, 李建, 等. 温度约束的MEMS陀螺零漂补偿模型[J]. 红外技术, 2017, 39(1): 73-80. http://hwjs.nvir.cn/cn/article/id/hwjs201701014

    YAN Xinjie, LIN Yu, LI Jian, et al. Compensation model of MEMS gyroscope's null shift based on temperature constraint algorithm[J]. Infrared Technology, 2017, 39(1): 73-80. http://hwjs.nvir.cn/cn/article/id/hwjs201701014

    [21] 乔治∙埃利斯. 控制系统设计指南[M]. 4版: 汤晓君译. 北京: 机械工业出版社, 2016.

    George Ellis. Control System and Design Guide[M]. 4th Edition: Tang Xiaojun translated. Beijing: China Machine Press, 2016.

图(19)  /  表(4)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  13
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-20
  • 修回日期:  2023-11-16
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-06-19

目录

    /

    返回文章
    返回