新型多波段复合植被伪装材料

徐戎, 张晓忠, 吴晓

徐戎, 张晓忠, 吴晓. 新型多波段复合植被伪装材料[J]. 红外技术, 2021, 43(3): 266-271.
引用本文: 徐戎, 张晓忠, 吴晓. 新型多波段复合植被伪装材料[J]. 红外技术, 2021, 43(3): 266-271.
XU Rong, ZHANG Xiaozhong, WU Xiao. A New Multiband Composite Vegetation Camouflage Material[J]. Infrared Technology , 2021, 43(3): 266-271.
Citation: XU Rong, ZHANG Xiaozhong, WU Xiao. A New Multiband Composite Vegetation Camouflage Material[J]. Infrared Technology , 2021, 43(3): 266-271.

新型多波段复合植被伪装材料

基金项目: 

湖南省高等学校应用特色学科 湘教通〔2018〕 469

湖南省高校科技创新团队支持计划资助 湘教通[2019]379

湖南文理学院博士科研启动项目 18BSQD08

详细信息
    作者简介:

    徐戎(1980-),男,湖南长沙人,副教授,博士,主要从事伪装材料制备及性能研究。E-mail: amxurong@163.com

  • 中图分类号: TJ04, TB34

A New Multiband Composite Vegetation Camouflage Material

  • 摘要: 为满足多波段兼容伪装的需求,采用多种材料合理匹配与多功能层组合结构的方法,制备了一种可实现可见光、红外和雷达多波段兼容的新型复合植被伪装材料。用雷达波屏蔽效能和反射率测试实验对伪装材料的吸波性能进行了测试,用成像法对伪装材料的可见光和热红外伪装性能进行了试验检测。结果表明,研制的伪装材料有良好的雷达波衰减性能,大于5 dB的吸收频宽高达3.9 GHz。植被伪装材料面层纹理、颜色、亮度、热图与背景较为接近,隔热效果明显,具有良好的可见光和红外伪装效果。
    Abstract: To meet the requirements of multiband compatible camouflage, a new composite vegetation camouflage material that can realize multiband compatibility of visible light, infrared, and radar was fabricated by reasonably matching various materials and a multi-functional layer structure. The absorbing properties of the camouflage material were evaluated by a radar wave shielding effectiveness and reflectivity test. The visible and thermal infrared camouflage properties of the camouflage material were tested by an imaging method. The results show that the camouflage material has good radar wave attenuation performance, and the absorption bandwidth at values of 5dB or more is as high as 3.9GHz. The texture, color, brightness, and thermal map of the surface layer of the vegetation camouflage material are close to the background values, and the thermal insulation effect is evident, enabling good visible and infrared camouflage effects.
  • 红外探测器一般分为两种:一种是在低温致冷系统协助下才能够正常工作的,它成本高、功耗大、寿命短;另一种是非制冷热红外探测器,它在成本、功耗、寿命、谱宽波段等方面更具有优势[1-2]。非制冷红外成像使用的核心部件是微测辐射热计,微测辐射热计的性能是由热敏材料的电阻温度系数等因素决定的。制备在室温附近具有高电阻温度系数即TCR(temperature coefficient of resistance),低方块电阻,并且没有相变弛豫的热敏薄膜是非制冷红外成像技术关键所在。目前有关这类热敏薄膜材料的研究报道有很多,VO2薄膜就是最常见的一种。

    VO2薄膜是一种具有相变特性的功能薄膜,未掺杂的VO2薄膜在64℃具有从低温单斜相向高温四方相发生相变的行为[3]。这种奇特的相变行为很快引起了国内外众多科研人员的关注。从20世纪80年代开始到现在,有关VO2薄膜制备的报道有很多[4-11],其主要思路是将V2O5还原降价得到VO2。Wu J.[12]等人采用有机溶胶-凝胶法,将原料为摩尔比1:80:8的V2O5、C4H10O和C7H8O的混合溶液配制成溶胶,在云母片上旋涂后,再经过540℃的高温退火,制备出二氧化钒薄膜。易静[13]等利用水热法,将研磨好的V2O5和无水亚硫酸钠粉末,混合后放入烧杯内,加入蒸馏水、调节pH值和升温速率进行反应。24 h后,再将充分反应后的样品溶解于氢氧化钠溶液,进行过滤、洗涤烘干,最终制备出纯度为85.4%二氧化钒薄膜。唐振方[14]等利用射频磁控溅射设备对V2O5陶瓷烧结靶材进行溅射沉积镀膜,再经氩气气氛退火处理得到纯度94%的VO2薄膜。李金华[15]等采用离子束增强沉积的方法,将纯度为99.7%的V2O5粉末压成溅射靶。在使用氩离子束溅射沉积薄膜的同时,用氩氢混合束对沉积膜作高剂量离子注入,使沉积膜中V2O5的V-O键断裂,利用氢的还原性将+5价的钒还原为+4价,退火后获得室温热电阻温度系数约4%的VO2薄膜。由于未掺杂的VO2薄膜的相变温度高于室温,且存在相变驰豫,不能直接用作室温热敏薄膜。通过掺杂其他元素改变VO2的相变温度和相变驰豫温度的报道也有很多[16-17]。付学成[18]等将Ta2O5与V2O5粉末均匀混合压制成溅射靶,用离子束增强沉积的方法,在二氧化硅衬底上制备出掺Ta原子比为3%的二氧化钒薄膜,测得相变温度约48℃,相变驰豫温度约为1.5℃。谭源[19]等利用氮氧混合气体对钨钒金属靶进行共溅射的方法制备金属氧化物薄膜,并在常压下进行退火处理,结果表明掺钨原子比为1.4%的VO2薄膜的相变温度下降到31℃,相变驰豫温度约为2.5℃。关于能否利用具有还原性金属单质和V2O5进行共溅射,将V2O5还原制备出VO2的同时,实现掺杂改变相变温度和相变驰豫温度,国内外相关文献鲜有报道。

    我们尝试在真空度高于1×10-4 Pa的条件下,通入高纯氩气,用共溅射的方法,对高纯金属镁靶和V2O5陶瓷靶进行溅射。利用Mg的还原性将+5价的钒降低为+4价制备VO2薄膜。通过调节加在两个靶材的功率,来调节薄膜中Mg和V的原子比。研究发现,当Mg和V的原子比为7:93时,XRD(X-ray diffraction)测试结果显示制备的薄膜晶粒主要成分是VO2,XPS(X-ray photoelectron spectroscopy)测试结果表明薄膜中的V以+4,+5价混合存在。当Mg和V的原子比为1:2时,XRD测试结果显示制备的薄膜晶粒主要成分变成了MgV2O5,同时XPS测试结果表明薄膜中的V仅以+4价存在。扫描电子显微镜照片显示,MgV2O5薄膜结晶状况良好。用霍尔效应仪测试MgV2O5薄膜电阻随温度的变化,结果显示:在20℃附近也有相变行为,电阻温度系数高达-8.6%/K,回线弛豫温度仅有0.3℃。我们分析了MgV2O5薄膜的特殊结构,并用相关的相变理论解释了薄膜在室温附近具有高TCR,较小的弛豫温度的原因。

    实验采用美国丹顿真空explore-14多靶磁控溅射沉积系统制备薄膜,如图 1所示。

    图  1  丹顿explore-14磁控溅射沉积系统示意图
    Figure  1.  Schematic diagram of dent on vacuum sputter deposition system

    五氧化钒靶安装在射频靶枪,高纯镁靶在直流靶枪。靶材中心距离基片台中心距离约15 cm,靶与基片台倾斜夹角约45°。溅射气源采用纯度为99.999%氩气,设备的极限真空为2×10-5 Pa。基片台为水冷控温,温度为22℃,旋转速度0~12转/min,转速可调。

    衬底选用清洗干净的3 in P型(100)单面抛光的单晶硅片,薄膜厚度测试选用KLA-TencorP7台阶仪,电阻温度系数测试选用MMR霍尔效应仪,薄膜成分检测选用德国Bruker公司ADVANCE Da Vinci多功能X射线衍射仪,元素化合价测试选用日本岛津-Kratos公司AXIS UltraDLDX射线光电子能谱仪,图像分析采用德国Zeiss Ultra Plus场发射扫描电子显微镜。

    在本底真空度优于1×10-4 Pa的条件下,通入高纯氩气,设定工作气压为0.6 Pa,基片台转速设定为6转/min。预溅射功率为200 W,先将靶材分别预溅射5 min。再设定五氧化钒靶和高纯镁靶上的功率比值分别为300 W: 20 W,300 W: 30 W,300 W: 40 W,沉积时间为30 min,在3 in硅衬底上分3次制备薄膜。

    在共溅射的过程中保持五氧化钒靶的功率为300 W,将高纯镁靶上的功率由20 W增加到30 W、40 W。3次制备的薄膜厚度也有区别,台阶仪测试的结果表明:随着高纯镁靶上的功率由20 W,增加到30 W、40 W,沉积的薄膜厚度由355 nm增加到425 nm、578 nm。用EDS检测不同工艺条件制备薄膜中Mg和V的原子比,结果表明:镁靶上的功率为20 W时,沉积的薄膜中Mg和V的原子比为7:93,镁靶上的功率为30 W时,沉积的薄膜中Mg和V的原子比为17:83。当镁靶上的功率增加到40 W时,沉积的薄膜中Mg和V的原子比迅速增加到为1:2。

    利用XRD检测不同工艺条件制备薄膜的物相,测试角度范围为15~75°,步幅大小为0.02°,测试结果如图 2显示,其中2θ为衍射角。Mg靶的溅射功率为20 W时,共溅射制备的薄膜3条谱峰分别对应于VO2(PDF#73-0514)的(211)、(151)、(024)晶向,没有发现V2O5和MgO晶粒的存在。同时利用XPS检测所制备薄膜中V和Mg化合价情况。测试结果采用高斯曲线进行拟合显示,薄膜中的V元素以+4和+5价共同存在,如图 3。Mg2p峰的窄程扫描图谱中显示:Mg2+结合能为50.75 eV。

    图  2  共溅射制备的钒的氧化物XRD图谱
    Figure  2.  XRD patterns of vanadium oxides prepared by Co-sputtering
    图  3  钒的氧化物薄膜中V2p的窄程扫描图谱
    Figure  3.  XPS spectra of V2p of vanadium oxide film

    Mg靶的功率增加到30 W和V2O5共溅射制备的薄膜,XRD测试结果如图 2显示。共溅射沉积的薄膜晶粒主要成分仍然是(211)和(151)晶向的VO2。根据标准卡片PDF#89-4728分析,(116)晶向的MgV2O5晶粒开始出现。当Mg靶的溅射功率增加到40 W时,在共溅射制备的薄膜中,VO2消失,(116)晶向的MgV2O5和(111)、(200)、(220)晶向的MgO(PDF#89-7746)为主要成分,结晶状况如图 4(a), 图 4(b)

    图  4  MgV2O5薄膜的SEM图像
    Figure  4.  SEM images of MgV2O5 thin films

    V2p、Mg1S的窄程扫描图谱结果显示,如图 5(a), 图 5(b)。V4+的结合能为516.24 eV,半高宽约3.08 eV,Mg2+的结合能为50.75 eV,Mg1S的结合能为1303.74 eV半高宽约1.92 eV。XPS测试结果显示V、Mg两种元素在薄膜中的原子比例约为2:1。

    图  5  共溅射制备的薄膜中V2p、Mg1S的窄程扫描图谱
    Figure  5.  XPS spectrum of V2p、Mg1S of the film prepared by co-sputtering

    为对比研究镁还原V2O5靶材制备的MgV2O5薄膜和V2O5薄膜电学性能不同。用银浆做好电极后,对利用共溅射法制备的MgV2O5薄膜和未被还原的V2O5薄膜进行电学性能对比测试,如图 6

    图  6  MgV2O5和V2O5薄膜的电阻温度曲线
    Figure  6.  Resistance-temperature curves of MgV2O5 and V2O5

    随着高纯镁靶上的功率由20 W,增加到30 W、40 W,沉积的薄膜厚度由355 nm增加到425 nm、578 nm。用EDS检测不同工艺条件制备薄膜中Mg和V的原子比,结果显示:当镁靶上的功率为20 W时,沉积的薄膜中Mg和V的原子比为7:93,当镁靶上的功率增加到40 W时,沉积的薄膜中Mg和V的原子比迅速增加到为1:2。这可能是由于在溅射金属镁时采用的功率过低,加在阴极上的电压也很低,只有小部分氩离子的能量大于镁的溅射阈值,造成镁的溅射产额比较低。当功率略有增加时,阴极上的电压升高,大部分氩离子的能量大于镁的溅射阈值,镁的溅射产额快速增加,引起薄膜的组分发生了变化,导致薄膜厚度也大幅度增加。

    当Mg靶的溅射功率为20 W时,共溅射制备的薄膜中Mg2+结合能为50.75 eV。+2价的镁离子存在证明了镁原子可以将+5价的钒还原为+4价。V2p峰的窄程扫描图谱中V4+的结合能为516.26 eV,半高宽约0.81 eV;V5+的结合能为517.62 eV,半高宽约1.75 eV。通过高斯曲线对拟合过的V4+、V5+峰面积进行计算,可知在薄膜中V4+所占的比例约为14%,这和7%的Mg原子理论上可以将14%的V5+还原成V4+的结果非常吻合。

    虽然XPS检测结果显示制备薄膜中有+5价V的存在,但XRD测试的结果中没有发现V2O5的存在。这可能是因为沉积的薄膜没有经过退火处理,V2O5以非晶状态存在造成的。根据Scherrer公式DKλ/(βcosθ),可以计算出VO2晶粒尺寸约5 nm。由于VO2晶粒比较小,且在薄膜中占有的比例低,SEM图像中很难发现它的存在。

    当Mg靶的溅射功率增加到40 W时,XPS测试结果显示:V、Mg两种元素在薄膜中的原子比例为1:2。这与XRD测试得出的薄膜的主要成分是MgV2O5这一结果非常吻合。

    图 6可以看出,未被还原的V2O5薄膜285~345 K的温度范围内电阻随温度的变化近似一条直线,无相变行为,升降温曲线是重合在一起的。由TCR计算公式${C_{T, R}} = \frac{1}{R} \times \frac{{\Delta R}}{{\Delta T}} $,R为293 K时薄膜电阻,可以计算得出,未被还原的V2O5薄膜在室温20℃时,TCR约为-1.4%/K。MgV2O5薄膜在285~345 K的温度范围内电阻由90 kΩ下降到1.4 kΩ,减少了约98%,在室温20℃附近显示出明显的相变行为,此温度下的TCR约为-8.6%/K,同时升降温回线的弛豫温度仅为0.3℃,这一结果比未掺杂VO2薄膜的弛豫温度3~5℃[20],低很多。

    目前有关MgV2O5材料性质报道的论文极少,对于薄膜在室温附近具有相变行为且弛豫温度仅为0.3℃这一现象,可能是因为MgV2O5属于钒酸盐梯状化合物,其结构特点是典型的梯形结构,一个梯内的相互作用要比相邻梯间的相互作用大很多[21]。当薄膜温度从310~290 K进行变换时,沿c轴方向形成长和短的两种V-V键,从而使c参数有双重值,这种变化会在V3d导带费米能级上产生一个极小的能隙[22],这类相变属于一级相变,是造成MgV2O5薄膜在285~310 K的附近温度电阻曲线不重合的主要原因。

    据文献[23]报道MgV2O5常温下是一种磁性材料。当薄膜吸收或释放热量发生相变时,不但吉布斯自由能和化学势能都相等,即G1G2μ1μ2,化学势的一级偏微商也相等,只是化学势二级偏微商不相等。MgV2O5在室温附近发生一级相变的同时,可能伴随着二级相变,这类相变会影响材料的磁性,对材料的体积,焓无影响。由于二级相变的存在,弛豫温度要比未掺杂VO2薄膜的弛豫温度小很多。

    另外,由负温度电阻系数热敏电阻器公式:

    $$ {R_{25}} = {R_T}\exp {B_{\rm{n}}}\left( {\frac{1}{{298}} - \frac{1}{T}} \right) $$

    式中:R25为材料25℃的电阻值;RT为温度T时的实际电阻值;Bn为负电阻温度系数热敏电阻器材料物理特性的一个常数。由公式可以计算出,在温度为20℃时,材料常数Bn约为6700。这从另外一个方面说明了该材料在室温附近的绝对灵敏度非常高。

    采用高纯金属镁靶和五氧化钒靶进行共溅射,利用镁原子的还原性,可以将+5价的钒降低为+4价,制备+4价钒的氧化物薄膜。当Mg和V的原子比为1:2时,共溅射制备的薄膜主要成分是MgV2O5。电学性能测试结果显示,MgV2O5薄膜在20℃附近有相变行为,电阻温度系数高达-8.6%/K,回线弛豫温度仅为0.3℃。这可能是由于MgV2O5特殊的梯形结构和磁性特性,在20℃发生二级相变的同时,伴随微弱的一级相变造成的。这为制备在室温条件下,高TCR、低相变弛豫温度的红外薄膜材料提供帮助。

  • 图  1   新型多波段复合植被伪装材料结构示意图

    Figure  1.   Structural diagram of new multiband composite vegetation camouflage material

    图  2   单块植被伪装材料的成像照片

    Figure  2.   Imaging photos of a single piece of vegetation camouflage material

    图  3   多块植被伪装材料的可见光成像照片

    Figure  3.   Visible imaging photos of several vegetation camouflage materials

    图  4   多块伪装材料不同时间点热红外成像照片及表面温度

    Figure  4.   Thermal infrared imaging photos and surface temperature of several camouflage materials at different time points

    表  1   雷达波屏蔽效能测试实验结果

    Table  1   Experimental results of radar wave shielding effectiveness test

    Specimen number 1 2 3 4
    Carbon content/g 15.5 31 31 31
    Iron content/g 31 62 62 62
    Test frequency (18 GHz)/dB -21 -27 -37.4 -31.4
    Test frequency 10 GHz/dB -19.2 -44.3 -44 -42.1
    下载: 导出CSV

    表  2   雷达波反射率测试实验结果

    Table  2   Experimental results of radar wave reflectivity measurement

    Specimen number 1 2
    Band range with emissivity less than - 5dB/GHz 3.6-5.6 2.1-6
    Corresponding reflectivity Range/dB -5--15.6 -5.01--12.15
    Minimum reflectivity/dB -15.6 -12.15
    Frequency corresponding to the lowest reflectivity value/GHz 5.167 2.556
    下载: 导出CSV

    表  3   伪装前后汽车排气管辐射温度测试结果

    Table  3   Test results of exhaust pipe radiation temperature before and after camouflage

    Test number Test site Test temperature/℃
    1 Automobile exhaust pipe surface 45.2
    2 The surface of vegetation camouflage material covering automobile exhaust pipe 26.8
    下载: 导出CSV
  • [1] 王超, 时家明, 赵大鹏, 等. 多波段兼容伪装方法的分析研究[J]. 兵器材料科学与工程, 2012, 35(5): 92-95. DOI: 10.3969/j.issn.1004-244X.2012.05.027

    WANG Chao, SHI Jiaming, ZHAO Dapeng, et al. Analysis and Study of Multiband Compatible Camouflage Methods[J]. Ordnance Material Science and Engineering, 2012, 35(5): 92-95. DOI: 10.3969/j.issn.1004-244X.2012.05.027

    [2] 程红飞, 黄大庆. 多频谱兼容隐身材料研究进展[J]. 航空材料学报, 2014, 34(5): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201405015.htm

    CHENG Hongfei, HUANG Daqing. Research Progress in Multi- spectrum Compatible Stealth Materials[J]. Journal of Aeronautical Materials, 2014, 34(5): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HKCB201405015.htm

    [3] 王义, 刘东青, 周峰, 等. 自适应伪装材料与技术研究进展[J]. 中国材料进展, 2020, 39(5): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB202005012.htm

    WANG Yi, LIU Dongqing, ZHOU Feng, et al. Research Progress of Adaptive Camouflage Materials and Technology[J]. Materials China, 2020, 39(5): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB202005012.htm

    [4] 陈明辉, 程海峰, 夏成龙, 等. 可见光与红外兼容伪装材料研究进展[J]. 化工新型材料, 2018, 46(4): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201804010.htm

    CHEN Minghui, CHENG Haifeng, XIA Chenglong, et al. Research Progress in Visible Light and Infrared Compatible Camouflage Material[J]. New Chemical Materials, 2018, 46(4): 36-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC201804010.htm

    [5] 胡杰, 路远, 侯典心, 等. 红外伪装技术研究进展[J]. 激光与红外, 2018, 48(7): 803-808. DOI: 10.3969/j.issn.1001-5078.2018.07.001

    HU Jie, LU Yuan, HOU Dianxin. Research Progress of Infrared Camouflage Technology[J]. Laser & Infrared, 2018, 48(7): 803-808. DOI: 10.3969/j.issn.1001-5078.2018.07.001

    [6] 李广德, 刘东青, 王义, 等. 热红外伪装技术的研究现状与进展[J]. 红外技术, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001

    LI Guangde, LIU Dongqing, WANG Yi, et al. Research Status and Progress of the Thermal Infrared Camouflage Technology[J]. Infrared Technology, 2019, 41(6): 495-503. http://hwjs.nvir.cn/article/id/hwjs201906001

    [7] 严阳, 华文深, 张炎, 等. 可见-近红外高光谱伪装目标特性分析[J]. 红外技术, 2019, 41(2): 171-175. http://hwjs.nvir.cn/article/id/hwjs201902011

    YAN Yang, HUA Wenshen, ZHANG Yan, et al. Visible Near-infrared Hyperspectral Camouflage Target Characteristic Analysis[J]. Infrared Technology, 2019, 41(2): 171-175. http://hwjs.nvir.cn/article/id/hwjs201902011

    [8] 顾红军, 吴义富, 阳波. 新型层合多波段伪装器材研究[J]. 兵器材料科学与工程, 2006, 29(3): 54-56. DOI: 10.3969/j.issn.1004-244X.2006.03.015

    GU Hongjun, WU Yifu, YANG Bo. Research on A New Kind of Multilayer Multiplex-wave-bands Camouflage Equipment[J]. Ordnance Material Science and Engineering, 2006, 29(3): 54-56. DOI: 10.3969/j.issn.1004-244X.2006.03.015

    [9] 吴春, 刘祥萱, 吴友朋. 可见光/热红外伪装复合材料的制备与性能研究[J]. 红外技术, 2009, 31(10): 602-606. DOI: 10.3969/j.issn.1001-8891.2009.10.011

    WU Chun, LIU Xiangxuan, WU Youpeng. Study on the Preparation and Properties of Visible Light and Heat Infrared Camouflage Composite Materials[J]. Infrared Technology, 2009, 31(10): 602-606. DOI: 10.3969/j.issn.1001-8891.2009.10.011

    [10] 杨玉杰, 胡碧茹, 吴文健. 植物叶片仿生伪装材料的设计与制备[J]. 国防科技大学学报, 2011, 33(5): 50-53. DOI: 10.3969/j.issn.1001-2486.2011.05.010

    YANG Yujie, HU Biru, WU Wenjian. Design and Preparation of Bionic Camouflage Materials by Simulating Plant Leaves[J]. Journal of National University of Defense Technology, 2011, 33(5): 50-53. DOI: 10.3969/j.issn.1001-2486.2011.05.010

    [11] 王超, 时家明, 赵大鹏, 等. 入射角度对远红外与激光兼容伪装光子晶体薄膜特性的影响研究[J]. 人工晶体学报, 2013, 42(4): 635-638. DOI: 10.3969/j.issn.1000-985X.2013.04.018

    WANG Chao, SHI Jiaming, ZHAO Dapeng. Effect of the Incident Angle to the Compatible Camouflage of Photonic Crystals Film of Far Infrared and Laser Band[J]. Journal of Synthetic Crystals, 2013, 42(4): 635-638. DOI: 10.3969/j.issn.1000-985X.2013.04.018

    [12] 俞科静, 李佳铌, 曹海建, 等. 红外伪装材料的制备与性能研究[J]. 玻璃钢/复合材料, 2012(5): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201205017.htm

    YU Kejing, LI Jiani, CAO Haijian, et al. Preparation and Study of Infrared Camouflage Materials[J]. Fiber Reinforced Plastics/Composites, 2012(5): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-BLGF201205017.htm

    [13] 易怡, 邓联文, 罗衡, 等. 基于光子晶体的红外光与激光兼容伪装材料结构设计[J]. 中南大学学报: 自然科学版, 2017, 48(11): 2966-2971. DOI: 10.11817/j.issn.1672-7207.2017.11.009

    YI Yi, DENG Lianwen, LUO Heng, et al. Design of Infrared and Laser Band Compatible Camouflage Structure Based on Photonic Crystals[J]. Journal of Central South University: Science and Technology, 2017, 48(11): 2966-2971. DOI: 10.11817/j.issn.1672-7207.2017.11.009

    [14] 高旭芳. 伪装武器装备的几种方法及发展浅谈[J]. 国防技术基础, 2008(9): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GFJC200809015.htm

    GAO Xufang. Several Methods and Development of Camouflage Weapons and Equipment[J]. Technology Foundation of National Defence, 2008(9): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GFJC200809015.htm

    [15] 肖猛, 闻映红, 吴钒. 电波暗室性能指标的测试方法[J]. 安全与电磁兼容, 2005(S1): 49-52, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-AQDC2005S1014.htm

    XIAO Meng, WEN Yinghong, WU Fan. Test Method for Specification of Anechoic Acahamber[J]. Safety & EMC, 2005(S1): 49-52, 63. https://www.cnki.com.cn/Article/CJFDTOTAL-AQDC2005S1014.htm

    [16] 阳波, 顾红军, 吴义富. 武器装备伪装毯研究[J]. 装备环境工程, 2005, 2(6): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX200506021.htm

    YANG Bo, GU Hongjun, WU Yifu. Research on a new kind of multilayer multiplex-wave-bands camouflage equipment[J]. Equipment Environmental Engineering, 2005, 2(6): 94-97. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCX200506021.htm

  • 期刊类型引用(1)

    1. 付学成,徐锦滨,乌李瑛,付刘成,王英. 溅射工艺时间对不同靶材溅射速率的影响. 实验室研究与探索. 2024(09): 37-40 . 百度学术

    其他类型引用(0)

图(4)  /  表(3)
计量
  • 文章访问数:  374
  • HTML全文浏览量:  202
  • PDF下载量:  44
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-08-09
  • 修回日期:  2021-03-09
  • 刊出日期:  2021-04-01

目录

/

返回文章
返回
x 关闭 永久关闭

尊敬的专家、作者、读者:

端午节期间因系统维护,《红外技术》网站(hwjs.nvir.cn)将于2024年6月7日20:00-6月10日关闭。关闭期间,您将暂时无法访问《红外技术》网站和登录投审稿系统,给您带来不便敬请谅解!

预计6月11日正常恢复《红外技术》网站及投审稿系统的服务。您如有任何问题,可发送邮件至编辑部邮箱(irtek@china.com)与我们联系。

感谢您对本刊的支持!

《红外技术》编辑部

2024年6月6日