采用暗态点光源模型的夜间去雾算法

张竞阳, 严利民, 陈志恒

张竞阳, 严利民, 陈志恒. 采用暗态点光源模型的夜间去雾算法[J]. 红外技术, 2021, 43(8): 798-803.
引用本文: 张竞阳, 严利民, 陈志恒. 采用暗态点光源模型的夜间去雾算法[J]. 红外技术, 2021, 43(8): 798-803.
ZHANG Jingyang, YAN Limin, CHEN Zhiheng. Nighttime Fog Removal Using the Dark Point Light Source Model[J]. Infrared Technology , 2021, 43(8): 798-803.
Citation: ZHANG Jingyang, YAN Limin, CHEN Zhiheng. Nighttime Fog Removal Using the Dark Point Light Source Model[J]. Infrared Technology , 2021, 43(8): 798-803.

采用暗态点光源模型的夜间去雾算法

基金项目: 

国家自然科学基金 61674100

详细信息
    作者简介:

    张竞阳(1996-),女,安徽省亳州市人,硕士研究生,研究领域为数字图像处理。E-mail: Azjy5566@163.com

    通讯作者:

    严利民(1971-),男,博士,副教授,研究领域为集成电路设计及系统集成、新型显示技术和计算机视觉。E-mail: yanlm@shu.edu.cn

  • 中图分类号: TP391

Nighttime Fog Removal Using the Dark Point Light Source Model

  • 摘要: 针对夜间雾、霾场景下的去雾图像存在颜色失真、纹理损失、亮度低等缺陷,本文提出了一种采用暗态点光源模型的夜间去雾算法,通过构建夜间雾、霾场景的暗态点光源模型,利用联合双边滤波、限制对比度自适应直方图均衡化等算法对降质图像进行处理,结合大气散射模型得到去雾图像。实验结果表明,该算法的处理速度快、夜间去雾效果较好,较对比算法在对比度、平均梯度以及信息熵上均有一定程度地改善,有效解决了去雾图像的颜色失真、纹理损失、亮度低等缺陷。
    Abstract: To address image distortion, texture loss, and low brightness in nighttime fog scenes, this paper proposes a nighttime defogging algorithm based on a dark point light source model. The dark point light source model was first constructed and the degraded image was processed by an algorithm that utilizes both bilateral filtering and limited contrast adaptive histogram equalization. Then, the defogging image was obtained by combining with the atmospheric scattering model. The experimental results show that this algorithm has a fast processing speed, a better effect of nighttime fogging, and a certain degree of improvement in terms of contrast, average gradient, and information entropy when compared with the contrast algorithm. This model can therefore effectively address image distortion, texture loss, and low brightness of fogging images.
  • 图  1   本文算法的实现过程

    Figure  1.   The implementation of the proposed method

    图  2   大气光分布估计过程

    Figure  2.   Estimation process of atmospheric light distribution

    图  3   透射率分布的估计过程

    Figure  3.   Estimation process of transmittance distribution

    图  4   实验结果比较

    Figure  4.   Comparison of experimental results for different method

    表  1   图 4的客观评价结果

    Table  1   Evaluation of the results in Fig. 4

    Index Algorithm Fig. 1 Fig. 2 Fig. 3 Fig. 4
    IE HE[7] 7.3539 6.9861 6.9447 6.5511
    Zhang[4] 7.0074 6.6843 6.8380 6.4599
    Li[5] 6.2890 5.8723 6.4657 5.4543
    Proposed 7.5694 6.7746 7.0220 6.6502
    AG HE[7] 0.0646 0.0693 0.0521 0.0415
    Zhang[4] 0.0491 0.0519 0.0471 0.0311
    Li[5] 0.0272 0.0276 0.0288 0.0161
    Proposed 0.0653 0.0707 0.0535 0.0457
    Contrast HE[7] 0.1745 0.1709 0.1346 0.1059
    Zhang[4] 0.1565 0.1622 0.1528 0.1217
    Li[5] 0.1129 0.0913 0.1183 0.0875
    Proposed 0.1823 0.1754 0.1562 0.1238
    下载: 导出CSV
  • [1] 余顺园, 朱虹. 夜间有雾图像的光照模型构建及去雾[J]. 光学精密工程, 2017, 25(3): 729-734. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201703025.htm

    YU S Y, ZHU H, Illumination model construction and defogging of night foggy image[J]. Optics And Precision Engineering, 2017, 25(3): 729-734. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201703025.htm

    [2] 郭璠, 邹北骥, 唐琎. 基于多光源模型的夜晚雾天图像去雾算法[J]. 电子学报, 2017, 45(9): 2127-2134. DOI: 10.3969/j.issn.0372-2112.2017.09.011

    GUO P, ZOU B J, TANG J. Defogging algorithm of night fog image based on multi light source model[J]. Acta Electronica Sinica, 2017, 45(9): 2127-2134. DOI: 10.3969/j.issn.0372-2112.2017.09.011

    [3] 左健宏, 蔺素珍, 禄晓飞, 等. 基于雾线暗原色先验的红外图像去雾算法[J]. 红外技术, 2020, 42(6): 552-558. http://hwjs.nvir.cn/article/id/hwjs202006007

    ZUO J H, LIN S Z, LU X F, et al. Infrared image defogging algorithm based on fog line dark primary color prior[J]. Infrared Technology, 2020, 42(6): 552-558. http://hwjs.nvir.cn/article/id/hwjs202006007

    [4]

    ZHANG J, CAO Y, FANG S, et al. Fast haze removal for nighttime image using maximum reflectance prior[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7418-7426.

    [5]

    LI Y, TAN R T, Brown M S. Nighttime haze removal with glow and multiple light colors[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 226-234.

    [6]

    YU T, SONG K, MIAO P, et al. Nighttime Single Image Dehazing via Pixel-Wise Alpha Blending[J]. IEEE Access, 2019(7): 114619-114630. http://ieeexplore.ieee.org/document/8805086

    [7]

    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.

    [8] 刘志成, 王殿伟, 刘颖, 等. 基于二维伽马函数的光照不均匀图像自适应校正算法[J]. 北京理工大学学报, 2016, 36(2): 191-196, 214. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201602016.htm

    LIU Z C, WANG D W, LIU Y, et al. Adaptive correction algorithm for uneven illumination image based on two dimensional gamma function[J]. Journal of Beijing University of Technology, 2016, 36(2): 191-196, 214. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201602016.htm

    [9] 陈志恒, 严利民, 陆斌. 一种快速高效的实时视频去雾算法[J/OL]. 激光与光电子学进展: 1-12. [2020-11-24]. http://kns.cnki.net/kcms/detail/31.1690.TN.20191217.1447.008.html.

    CHEN Z H, YAN L M, LU B. A fast and efficient real time video defogging algorithm[J/OL]. Laser & Optoelectronics Progress: 1-12. [2020-11-24]. http://kns.cnki.net/kcms/detail/31.1690.TN.20191217.1447.008.html.

图(4)  /  表(1)
计量
  • 文章访问数:  294
  • HTML全文浏览量:  77
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2020-12-24
  • 刊出日期:  2021-08-19

目录

    /

    返回文章
    返回