Power Plant Pipeline Defect Detection and Segmentation Based on Otsu's and Region Growing Algorithms
-
摘要: 针对电厂高温管道红外图像背景复杂、干扰较多的特点,结合电厂巡检机器人系统对图像处理算法的需求,提出了基于改进二维最大类间方差法(OTSU)和区域生长法的电厂高温管道缺陷定位与分割方法。将红外图像灰度化后,通过改进二维OTSU进行预分割,提取出管道区域;基于管道区域灰度直方图,结合邻域灰度均值,实现多种子点的自动检测与定位;采用基于生长区域灰度均值和标准差的自适应阈值以及基于Prewitt算子的梯度幅值改进的生长准则完成缺陷区域的分割。实验证明,所提算法不仅能实现电厂高温管道多缺陷自动检测与定位,而且能精确地提取出缺陷区域,准确性高且具有良好的实时性。Abstract: In this study, we consider the complex background and high interference that adversely affect infrared images of high-temperature pipelines in power plants and the requirements of image processing algorithms for inspection robot systems. We propose a high-temperature pipeline defect detection and extraction method based on an improved two-dimensional Otsu and region growth algorithms. After grayscale conversion, a 2D Otsu method was used to extract the pipeline area. Based on the grayscale histogram of the pipeline region and the average gray value of the neighborhood, automatic detection and positioning of multiple sub-points were realized. The segmentation of the defect area was accomplished using two methods. The adaptive threshold was determined based on the gray mean and standard deviation values of the growth area, while the growth criterion was improved using the gradient amplitude of the Prewitt operator. The experimental results show that the proposed algorithm can not only realize the automatic detection and positioning of various defects in high-temperature pipelines of power plants, but it additionally segments the defect regions more accurately with high accuracy and good real-time performance.
-
表 1 缺陷区域像素点个数表
Table 1. Number of pixels in defect area
Algorithm Defect image Defect one Defect two Defect three Defect four Algorithm of this article Scene one 929 - - - Scene two 796 489 - - Scene three 249 129 109 96 Traditional regional growth algorithm Scene one 930 - - - Scene two 827 551 - - Scene three 117 79 59 80 Algorithm of literature [10] Scene one 941 - - - Scene two 776 493 - - Scene three 226 118 106 95 表 2 算法性能对比表
Table 2. Algorithm performance comparison table
Algorithm False detection Seed point selection Time/(s/sheet) Algorithm of this article No Auto 0.331 Traditional regional growth algorithm No Manual ≥3.5 Algorithm of literature [10] Yes Auto 0.254 -
[1] 王丞浩. 基于物联网的电厂智能巡检系统移动端设计与实现[D]. 吉林: 东北电力大学, 2019.WANG Chenghao. Design and Implement of Mobile Terminal Power Plant Intelligent Patrol System Based on IOT[D]. Jilin: Northeast Electric Power University, 2019. [2] 华志刚, 郭荣, 汪勇. 燃煤智能发电的关键技术[J]. 中国电力, 2018, 51(10): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL201810004.htmHUA Zhigang, GUO Rong, WANG Yong. Key technologies for intelligent coal-fired power generation[J]. Electric Power, 2018, 51(10): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL201810004.htm [3] 张燕东, 田磊, 李茂清, 等. 智能巡检机器人系统在火力发电行业的应用研发及示范[J]. 中国电力, 2017, 50(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL201710001.htmZHANG Yandong, TIAN Lei, LI Maoqing, et al. Application and development of intelligent inspection robot system in thermal power plant[J]. Electric Power, 2017, 50(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDL201710001.htm [4] 徐蔚波, 刘颖, 章浩伟. 基于区域生长的图像分割研究进展[J]. 北京生物医学工程, 2017, 36(3): 317-322. doi: 10.3969/j.issn.1002-3208.2017.03.16.XU Weibo, LIU Ying, ZHANG Haowei. Research progress in image segmentation based on region growing[J]. Beijing Biomedical Engineering, 2017, 36(3): 317-322. doi: 10.3969/j.issn.1002-3208.2017.03.16. [5] Jain Preetha M M S, Padmasuresh L, Bosco M J. Firefly based region growing and region merging for image segmentation[C]//2016 International Conference on Emerging Technological Trends (ICETT), 2016: 1-9. [6] 彭双, 肖昌炎. 结合区域生长与模糊连接度的肺气管树分割[J]. 计算机工程与应用, 2016, 52(13): 201-205. doi: 10.3778/j.issn.1002-8331.1407-0623PENG Shuang, XIAO Changyan. Segmentation of pulmonary airway tree by combining region growing and fuzzy connectedness[J]. Computer Engineering and Applications, 2016, 52(13): 201-205. doi: 10.3778/j.issn.1002-8331.1407-0623 [7] Senthilkumar B, Umamaheswari G, Karthik J. A novel region growing segmentation algorithm for the detection of breast cancer[C]//2010IEEE International Conference on Computational Intelligence and Computing Research, 2010: 1-4. [8] SONG L, LV Y, YANG B, et al. Segmentation of breast masses using adaptive region growing[C]//Ulaanbaatar, Ifost, 2013: 77-81. [9] 倪豪, 郑慧峰, 王月兵, 等. 基于自动种子区域生长的超声B图像缺陷分割方法[J]. 计量学报, 2018, 39(6): 878-883. doi: 10.3969/j.issn.1000-1158.2018.06.24NI Hao, ZHEN Huifeng, WANG Yuebing, et al. Ultrasonic B image defect segmentation Method Based on automatic seeded region growing[J]. Acta Metrologica Sinica, 2018, 39(6): 878-883. doi: 10.3969/j.issn.1000-1158.2018.06.24 [10] 李小磊, 曾曙光, 郑胜, 等. 基于滑动滤波和自动区域生长的陶瓷瓦表面裂纹检测[J]. 激光与光电子学进展, 2019, 56(21): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201921006.htmLI Xiaolei, ZENG Shuguang, ZHENG Sheng, et al. Surface crack detection of ceramic tile based on sliding filter and automatic region growth[J]. Laser & Optoelectronics Progress, 2019, 56(21): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201921006.htm [11] 施兢业, 刘俊. 基于改进区域生长法的电力设备红外图像分割[J]. 光学技术, 2017, 43(4): 381-384. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201704019.htmSHI Jingye, LIU Jun. Metation based on modified region growing algorithm[J]. Optical Technique, 2017, 43(4): 381-384. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201704019.htm [12] 胡淋波, 姚建刚, 孔维辉, 等. 基于红外图像的高压绝缘子串自动定位方法[J]. 红外技术, 2015, 37(12): 1047-1051. http://hwjs.nvir.cn/article/id/hwjs201512011HU Linbo, YAO Jiangang, KONG Weihui, et al. High voltage insulator string automatic location method based on infrared image[J]. Infrared Technology, 2015, 37(12): 1047-1051. http://hwjs.nvir.cn/article/id/hwjs201512011 [13] 宋银龙. 基于二维Otsu和模糊聚类的图像分割的研究及应用[D]. 合肥: 合肥工业大学, 2012.SONG Yinlong. Research and application of image segmentation based on two-dimensional otsu and fuzzy clustering[D]. Hefei: Hefei University of Technology, 2012. [14] 倪伟传, 许志明, 刘少江, 等. 复杂环境下的自适应红外目标分割算法[J]. 红外技术, 2019, 41(4): 357-363. http://hwjs.nvir.cn/article/id/hwjs201904010NI Weichuan, XU Zhiming, LIU Shaojiang, et al. Adaptive Infrared Target Segmentation Algorithm in Complex Environment[J]. Infrared Technology, 2019, 41(4): 357-363. http://hwjs.nvir.cn/article/id/hwjs201904010 [15] SHAO L, ZHANG Y, LI J, et al. Research on High Temperature Region of Infrared Pipeline Image Based on Improved Two-Dimensional-Otsu[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1637-1642. [16] 彭启伟, 罗旺, 冯敏, 等. 改进二维Otsu法和果蝇算法结合的图像分割方法[J]. 计算机应用, 2017, 37(S2): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2047.htmPENG Qiwei, LUO Wang, FENG Min, et al. Novel method for image segmentation based on improved two-dimensional Otsu and fruit fly algorithm[J]. Journal of Computer Applications, 2017, 37(S2): 193-197. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY2017S2047.htm [17] 周云燕, 杨坤涛, 黄鹰. 基于最小类内离散度的改进Otsu分割方法的研究[J]. 华中科技大学学报: 自然科学版, 2007, 35(2): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200702030.htmZHOU Yunyan, YANG Kuntao, HUANG Ying. Improved Otsu thresholding based on minimum inner-cluster variance[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2007, 35(2): 101-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG200702030.htm [18] HUANG C, LIU Q, LI X. Color image segmentation by seeded region growing and region merging[C]//2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010: 533-536. [19] YANG L, WU X, ZHAO D, et al. An improved Prewitt algorithm for edge detection based on noised image[C]//20114th International Congress on Image and Signal Processing, 2011: 1197-1200. -