Simulation Analysis of Thermal-Structure of an Optical Detection System
-
摘要: 热载荷是导致红外探测系统失效的主要原因之一,因此本文利用ANSYS Workbench软件对某红外成像光学探测组件进行不同温度载荷下的热-结构耦合分析。首先观察光学镜头与探测器之间后截距在不同温度载荷下的响应;然后利用光学软件ZEMAX得到后截距变化时理论上光学的成像质量;最后通过实验验证了理论计算模型,同时得到了不同温度载荷下光学探测系统的变形规律,发现探测器安装材料的热传导系数与热膨胀系数都会影响到探测系统的稳定性。本文的研究工作对红外成像光学探测系统的设计、优化以及可靠性方面具有重要的指导意义。Abstract: Thermal load is one of the main reasons for the failure of infrared detection system, therefore, thermal-structure coupling analysis of a certain type of infrared imaging optical detection module under different temperature loads by means of ANSYS Workbench software was performed in this study. First, the response of the back intercept between the optical lens and the detector under different temperature loads was observed, and then, the theoretical imaging quality was calculated by the optical software ZEMAX on the basis of the back intercept. Finally, the theoretical calculation models were verified by the environment test. Simultaneously, the deformation rule of the optical detection module under different temperature loads was obtained, and it was found that the conductivity coefficient and thermal expansivity of the installation material of the detector affected the stability of the detection module. This research can provide guidance on the design, optimization, and reliability of infrared imaging optical detection modules.
-
Keywords:
- optical detection /
- thermal-structure /
- imaging /
- reliability
-
-
表 1 零件名称及其对应的材料
Table 1 Name of parts and the corresponding materials
Name of parts Material Frame, lens base Titanium alloy Detector Kovar alloy Base of detector Aluminium alloy/Titanium alloy Bolt Stainless steel Lens Chalcogenide glass 表 2 材料的热力学系数
Table 2 Thermodynamics coefficient of materials
Material Density/(kg/m3) Young’s
modulus/PaPoisson’s
ratioThermal conductivity
coefficient/(W/mC)Thermal expansion
coefficient/(C-1)Aluminium alloy 2770 7.1×1010 0.33 150.0 2.3×10-5 Titanium alloy 4620 9.6×1010 0.36 21.9 9.4×10-6 Stainless steel 7750 1.9×1011 0.31 15.1 1.7×10-5 Kovar alloy 8170 1.6×1011 0.36 17.6 5.5×10-6 Chalcogenide glass 4710 2.0×1010 0.28 0.2 6.6×10-6 表 3 制冷机热分析参数
Table 3 Thermal analysis parameters of the refrigerator
Environment Convection coefficient /(W/m2·℃) Internal heat strength/(W/m3) High temperature
(60℃)30.0 2.0×105 Normal
temperature (26℃)9.7 1.6×105 Low temperature
(-45℃)30.0 8.0×104 表 4 不同温度载荷下结构位移
Table 4 Displacement of the structure at different temperature load
Temperature load Base material Displacement of
lens end/mmDisplacement of
detector end /mmChange of the back intercept/mm
(negative for increase)Normal temperature Aluminium alloy -0.0053 0.0125 -0.0178 Titanium alloy -0.0041 0.0032 -0.0073 High temperature Aluminium alloy -0.0173 0.0264 -0.0437 Titanium alloy -0.0165 0.0046 -0.0211 Low temperature Aluminium alloy 0.0295 -0.0402 0.0697 Titanium alloy 0.0287 -0.0126 0.0413 表 5 不同温度载荷下铝合金座系统时实验图像
Table 5 The experimental images of the aluminium alloy mount system at different temperature loads
Integrated time/ms The experimental images -45℃ 26℃ 60℃ 2 4 6 表 6 不同温度载荷下钛合金座时实验图像
Table 6 The experimental images of the titanium alloy mount system at different temperature loads
Integrated time/ms The experimental images -45℃ 26℃ 60℃ 2 4 6 表 7 不同积分时间下图像梯度值
Table 7 The image gradient values of different integral time
Temperature load Base material 2ms 4ms 6ms Normal temperature Aluminium alloy 255 504 978 Titanium alloy 270 541 1084 High temperature Aluminium alloy 143 241 472 Titanium alloy 247 504 1037 Low temperature Aluminium alloy 51 149 236 Titanium alloy 126 202 340 -
[1] 张义广, 杨军, 朱学平, 等.非制冷红外成像导引头[M].西安:西北工业大学出版社, 2009. ZHANG Yiguang, YANG Jun, ZHU Xueping, et al. Uncooled Infrared Seeker[M]. Xi'an: Northwestern Polytechnical University Press, 2009.
[2] 江乐果, 王一波, 焦彤, 等.吊舱平台微电机转子系统的分岔特性分析[J].飞控与探测, 2019, 2(4): 77-82. http://www.cqvip.com/QK/73078X/20194/7100053286.html JIANG Leguo, WANG Yibo, JIAO Tong, et al. Bifurcation characteristics analysis of micro-motor rotor system of optoelectronic pod platform[J]. Flight Control & Detection, 2019, 2(4): 77-82. http://www.cqvip.com/QK/73078X/20194/7100053286.html
[3] 邓准, 吕琦, 那佳, 等.光学导引头探测器的装调技术研究[J].航天制造技术, 2014(1): 53-56. http://d.wanfangdata.com.cn/Periodical/htgy201401014 DENG Zhun, LV Qi, NA Jia, et al. Research on assembly and debugging technology of the detector of optical seeker[J]. Aerospace Manufacturing Technology, 2014(1): 53-56. http://d.wanfangdata.com.cn/Periodical/htgy201401014
[4] 姬文晨, 张宇, 李茂忠.透射式红外光学系统的光机热集成分析[J].红外技术, 2015, 37(8): 73-77. http://d.wanfangdata.com.cn/Periodical/hwjs201508012 JI Wenchen, ZHANG Yu, LI Maozhong. Integrated optomechanical -thermal analysis of refractive infrared optical system[J]. Infrared Technology, 2015, 37(8): 73-77. http://d.wanfangdata.com.cn/Periodical/hwjs201508012
[5] 王勖成.有限单元法[M].北京:清华大学出版社, 2003. WANG Xucheng. Finite Element Method[M]. Beijing: Tsinghua University Press, 2003.
[6] 张昭, 蔡志勤.有限元方法与应用[M].大连:大连理工大学出版社, 2011. ZHANG Zhao, CAI Zhiqin. Finite Element Method and Its Application[M]. Dalian: Dalian University of Technology Press, 2011.
[7] CHEN K K, LI F P, ZHAO Y S. FEA of thermal characteristic of motorized spindle based on ANSYS workbench[J]. Applied Mechanics & Materials, 2013, 437: 36-41. https://www.scientific.net/AMM.437.36
[8] 顾建军, 孙逊, 蒋苏苏.基于ANSYS Workbench的行星滚柱丝杠动态特性分析[J].飞控与探测, 2019, 2(6): 82-88. http://d.wanfangdata.com.cn/periodical/fkytc201906012 GU Jianjun, SUN Xun, JIANG Susu, et al. Dynamic characteristics analysis of planetary roller screw based on ANSYS workbench[J]. Flight Control & Detection, 2019, 2(6): 82-88. http://d.wanfangdata.com.cn/periodical/fkytc201906012
[9] 周连军, 韩福忠, 白丕绩, 等.高温碲镉汞中波红外探测器的国内外进展[J].红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002 ZHOU Lianjun, HAN Fuzhong, BAI Piji, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
[10] ZHANG W, YAO X, WU X Q, et al. Application of ANSYS in thermal analysis of pyroelectric thin film infrared detector[J]. Journal of Transcluction Technology, 2004, 17(1): 98-100. http://www.ir.xjtu.edu.cn/item/ir/7517
[11] 王春红, 向阳.超光谱成像探测系统的线阵CCD平均调制传递函数[J].红外技术, 2009, 31(5): 249-251. DOI: 10.3969/j.issn.1001-8891.2009.05.001 WANG Chunhong, XIANG Yang. Research on average MTF of line-array CCD with contrast method[J]. Infrared Technology, 2009, 31(5): 249-251. DOI: 10.3969/j.issn.1001-8891.2009.05.001