YUE Shangwu, JI Chengsheng, SUN Dexin. Auto Disturbance Rejection Control Strategy in Servo System Controlling with Permanent Magnet Synchronous Motor[J]. Infrared Technology , 2020, 42(2): 121-126.
Citation: YUE Shangwu, JI Chengsheng, SUN Dexin. Auto Disturbance Rejection Control Strategy in Servo System Controlling with Permanent Magnet Synchronous Motor[J]. Infrared Technology , 2020, 42(2): 121-126.

Auto Disturbance Rejection Control Strategy in Servo System Controlling with Permanent Magnet Synchronous Motor

More Information
  • Related Articles

    [1]BAI Hao, BAI Tingzhu. Infrared Image Super-Resolution Reconstruction Algorithm Based on Deep Residual Neural Network[J]. Infrared Technology , 2024, 46(2): 176-182.
    [2]YUAN Xilin, ZHANG Baohui, ZHANG Qian, HE Ming, ZHOU Jinjie, LIAN Cheng, YUE Jiang. Infrared Images with Super-resolution Based on Deep Convolutional Neural Network[J]. Infrared Technology , 2023, 45(5): 498-505.
    [3]LIN Renpu, ZHANG Li, MA Chenhui, LIU Xuan, ZHANG Hao. Improved Super-resolution Reconstruction of Infrared Images Based on Deep Back-projection Networks[J]. Infrared Technology , 2020, 42(9): 873-879.
    [4]LIAO Xiaohua, CHEN Niannian, JIANG Yong, QI Shifeng. Infrared Image Super-resolution Using Improved Convolutional Neural Network[J]. Infrared Technology , 2020, 42(1): 75-80.
    [5]LU Heyang, SU Shengjun, YUAN Minghui, SHI Weibin. Super-resolution Reconstruction of Terahertz Images[J]. Infrared Technology , 2019, 41(1): 59-63.
    [6]A Study on Rapid Image Super-resolution[J]. Infrared Technology , 2018, 40(3): 269-274.
    [7]FAN Chao, SUN Ning-ning, XIA Xu. Super-resolution Reconstruction Based on Image Sequences[J]. Infrared Technology , 2010, 32(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2010.05.007
    [8]Image Preprocessing for Infrared Small Target Detection Based on Maximum Background Model Prediction[J]. Infrared Technology , 2006, 28(12): 683-685. DOI: 10.3969/j.issn.1001-8891.2006.12.001
    [9]XU Hong-cai, XIANG Jian-yong, PAN Hao. An Improved POCS Algorithm for Super-resolution Image Reconstruction[J]. Infrared Technology , 2005, 27(6): 477-480. DOI: 10.3969/j.issn.1001-8891.2005.06.010
    [10]Infrared Image Pretreatment for Warship Targets[J]. Infrared Technology , 2003, 25(3): 9-12. DOI: 10.3969/j.issn.1001-8891.2003.03.003
  • Cited by

    Periodical cited type(9)

    1. 杨锋,赵维骏,顾燕,董隽媛,吕扬,李海生,郭一亮,朱波. 基于细节显著性估计的低照度图像增强方法. 红外技术. 2024(10): 1145-1153 . 本站查看
    2. 韩龙,刘凯雷,左超,王超群,苏勋文. 改进ESRGAN的电力设备红外图像超分辨率重建方法. 黑龙江科技大学学报. 2023(03): 445-450 .
    3. 翁宇游,郑州,郭俊,赵志超,谢炜,胡雨. 改进U-Net网络的接地网图像超像素分割. 激光与红外. 2023(08): 1196-1202 .
    4. 杨锋,赵维骏,顾燕,朱波,吕扬,焦国力,闵超波. 基于正则化高斯场模型的低光图像增强. 激光与红外. 2023(10): 1586-1592 .
    5. 吴天强,王义贺. 基于改进深度学习自编码的图像边沿畸变校正算法研究. 光电子·激光. 2021(02): 149-156 .
    6. 牛康力,谌雨章,沈君凤,曾张帆,潘永才,王绎冲. 基于深度学习的双通道夜视图像复原方法. 计算机应用. 2021(06): 1775-1784 .
    7. 温郭英. 视觉传达技术的低分辨激光图像重建研究. 激光杂志. 2021(10): 87-92 .
    8. 彭雯. 基于深度学习的模糊图像超分辨率重建方法. 电子技术与软件工程. 2020(12): 125-126 .
    9. 黄元忠,廖小华,卢庆华. 结合双线性插值与局部均值的红外图像插值算法. 计算技术与自动化. 2020(02): 133-137 .

    Other cited types(6)

Catalog

    Article views (239) PDF downloads (22) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return