YANG Chunwei, WANG Shicheng, LIAO Shouyi, LIU Huaping. Forward-looking-infrared Building Object Tracking Based on Sparse Representation of Covariance Descriptor[J]. Infrared Technology , 2016, 38(5): 389-395.
Citation: YANG Chunwei, WANG Shicheng, LIAO Shouyi, LIU Huaping. Forward-looking-infrared Building Object Tracking Based on Sparse Representation of Covariance Descriptor[J]. Infrared Technology , 2016, 38(5): 389-395.

Forward-looking-infrared Building Object Tracking Based on Sparse Representation of Covariance Descriptor

More Information
  • Related Articles

    [1]CAO Min, WANG Yao. Typical Infrared Object Segmentation Based on Sparse Shape Prior and Variational Regularization[J]. Infrared Technology , 2025, 47(5): 611-618.
    [2]WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924.
    [3]LIAO Jiajun, LIU Zhigang, JIANG Jiangjun, LU Zhiyong. Target Detection in Hyperspectral Image Using Two Steps Reconstruction Based on Sparse Representation[J]. Infrared Technology , 2016, 38(8): 699-704.
    [4]YANG Chunwei, WANG Shicheng, LIAO Shouyi, LIU Huaping. An Infrared Target Recognition Method Based on Kernel Sparse Coding[J]. Infrared Technology , 2016, 38(3): 230-235.
    [5]MEI Jiacheng, WANG Rui, YE Hanmin. Compressive Fusion and Target Detection Based on Sparse Representation[J]. Infrared Technology , 2016, 38(3): 218-224.
    [6]ZOU Hui, HUANG Fuzhen. Infrared Image Segmentation for Electrical Equipment Based on FAsT-Match Algorithm[J]. Infrared Technology , 2016, 38(1): 21-27.
    [7]WANG Zhi-she, YANG Feng-bao, PENG Zhi-hao. Multi-source Heterogeneous Image Fusion Based on NSST and Sparse Presentation[J]. Infrared Technology , 2015, (3): 210-217.
    [8]SUN Jun-ding, ZHAO Hui-hui. Sparse Representation and Applications in Image Processing[J]. Infrared Technology , 2014, (7): 533-537.
    [9]LI Wei, SHEN Zhen-kang, LI Biao. Solving Parameters of Affine Transformation Based on ACO[J]. Infrared Technology , 2007, 29(11): 662-665. DOI: 10.3969/j.issn.1001-8891.2007.11.011
    [10]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005
  • Cited by

    Periodical cited type(13)

    1. 王振,刘磊. 融合彩色模型空间的电力设备红外图像增强. 红外技术. 2024(02): 225-232 . 本站查看
    2. 王奎,黄福珍. 基于残差融合的改进Retinex图像增强算法. 计算机应用与软件. 2024(04): 205-211+218 .
    3. 马瑞. 基于自适应遗传算法的红外子热像图模糊增强方法. 湖南文理学院学报(自然科学版). 2024(03): 30-36 .
    4. 万卫国,李纯洁,陈孟秋. 大电流供电系统智能故障预警. 船电技术. 2023(05): 29-31 .
    5. 何智博,曾祥进,邓晨,宋彭彭. 基于局部熵-局部对比度和双区域直方图均衡化的红外图像增强. 红外技术. 2023(06): 598-604 . 本站查看
    6. 肖鹏,王红茹. 一种用于局部低照度水下图像的自适应增强方法. 激光杂志. 2022(04): 114-119 .
    7. 张丽娟,朱会龙. 基于光照补偿的产品包装外观图像自适应增强方法. 激光杂志. 2022(04): 184-188 .
    8. 迟明伟. 基于电网热红外图像增强算法质量评价. 科技创新与应用. 2022(13): 83-87 .
    9. 李凌杰,陈菲菲. 基于改进直方图的红外图像增强方法. 航空兵器. 2022(02): 101-105 .
    10. 朱家乙,杨宏双,何伟,王伟男,沙怡中,黄晓江,许桢杰. 一种基于区域分割的直方图均衡算法. 红外技术. 2022(06): 587-592 . 本站查看
    11. 蔡美芳,万里勇. 基于自适应Gamma校正的红外图像增强算法. 光学技术. 2022(04): 486-491 .
    12. 李少荣. 基于改进直方图均衡化的红外图像增强技术的研究. 工业控制计算机. 2022(12): 52-53+56 .
    13. 马琼,李通,赵巨峰,崔光茫. 使用局部视觉显著分析的红外图像增强. 光学技术. 2021(05): 601-607 .

    Other cited types(13)

Catalog

    Article views (178) PDF downloads (9) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return