LIN Suzhen, ZHANG Haisong, LU Xiaofei, LI Dawei, LI Yi. RBNSM: a New Method for Infrared Dim and Small Target Detection in Complex Backgrounds[J]. Infrared Technology , 2022, 44(7): 667-675.
Citation: LIN Suzhen, ZHANG Haisong, LU Xiaofei, LI Dawei, LI Yi. RBNSM: a New Method for Infrared Dim and Small Target Detection in Complex Backgrounds[J]. Infrared Technology , 2022, 44(7): 667-675.

RBNSM: a New Method for Infrared Dim and Small Target Detection in Complex Backgrounds

More Information
  • Received Date: October 09, 2021
  • Revised Date: December 07, 2021
  • Infrared dim and small target (IRDST) detection is a longstanding and challenging problem in infrared search and track systems. To address the problems of a low detection rate and high false alarm rate for dim and small targets in complex backgrounds, a method is proposed for detecting IRDSTs using a regional bi-neighborhood saliency map (RBNSM). First, using the local a-priori property of the weak target, a sliding window is defined and divided into multiple cells before the mean value of the first maximum gray levels of the central cell is calculated to highlight the weak target. Then, the adjacent and spaced neighbors of the central cell are constructed and the mean value of their respective gray levels is calculated. Subsequently, the salient maps of the two neighbors are the extracted from different directions and multiplied point by point to further suppress the clutter background and enhance the weak target. Finally, the target is accurately detected by adaptive extraction. The detection results of various typical IR complex background images and SIRST datasets show that RBNSM has a better detection performance and clutter suppression ability in complex backgrounds than the seven representative methods.
  • [1]
    GUAN X, ZHANG L, HUANG S, et al. Infrared small target detection via non-convex tensor rank surrogate joint local contrast energy[J]. Remote Sensing, 2020, 12(9): 1520. DOI: 10.3390/rs12091520
    [2]
    LU R, YANG Xiaogang, LI W, et al. Robust infrared small target detection via multidirectional derivative-based weighted contrast measure[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 1(1): 1-5.
    [3]
    ZHANG L, LIN Z. Infrared small target detection based on anisotropic contrast filter[C]//2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP). IEEE, 2020: 70-73.
    [4]
    SUN Y, YANG J, AN W. Infrared dim and small target detection via multiple subspace learning and spatial-temporal patch-tensor model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020(99): 1-16.
    [5]
    GAO C, MENG D, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing, 2013, 22(12): 4996-5009. DOI: 10.1109/TIP.2013.2281420
    [6]
    吴双忱, 左峥嵘. 基于深度卷积神经网络的红外小目标检测[J]. 红外与毫米波学报, 2019, 38(3): 371-380. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903019.htm

    WU Shuangchen, ZUO Zhengrong. Small target detection in infrared images using deep convolutional neural networks[J]. Journal of Infrared Millimeter Waves, 2019, 38(3): 371-380. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201903019.htm
    [7]
    DAI Y, WU Y, ZHOU F, et al. Attentional local contrast networks for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021(99): 1-12.
    [8]
    LIN S, HAN Z, LI D, et al. Integrating model-and data-driven methods for synchronous adaptive multi-band image fusion[J]. Information Fusion, 2020, 54: 145-160. DOI: 10.1016/j.inffus.2019.07.009
    [9]
    赵兴科, 李明磊, 张弓, 等. 基于显著图融合的无人机载热红外图像目标检测方法[J/OL]. 自动化学报: 1-15. [2021-07-02]. http://kns.cnki.net/kcms/detail/11.2109.tp.20200421.1108.003.html.

    ZHAO Xingke, LI Minglei, ZHANG Gong, et al. Object Detection Method Based on Saliency Map Fusion for UAV-borne Thermal Images[J/OL]. Acta Automatica Sinica, 1-15. [2021-07-02]. http://kns.cnki.net/kcms/detail/11.2109.tp.20200421.1108.003.html.
    [10]
    WANG H, ZHOU L, WANG L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8509-8518.
    [11]
    DAI Y, WU Y, ZHOU F, et al. Asymmetric contextual modulation for infrared small target detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). 2021: 950-959.
    [12]
    LI B, XIAO C, WANG L, et al. Dense Nested Attention Network for Infrared Small Target Detection[J/OL]. arXiv preprint arXiv: 2 106.00487, 2021.
    [13]
    ZHAO M, CHENG L, YANG X, et al. TBC-Net: A real-time detector for infrared small target detection using semantic constraint[J/OL]. Computer Vision and Pattern Recognition, 2019. https://arxiv.org/abs/2001.05852.
    [14]
    NIE Y, LI W, ZHAO M, et al. Infrared small target detection in image sequences based on temporal low-rank and sparse decomposition[C]// Proc. SPIE, Twelfth International Conference on Graphics and Image Processing, 2021: 11720A.
    [15]
    薛锡瑞, 黄树彩, 马佳顺, 等. 基于局部熵参考预处理的RPCA红外小目标检测[J]. 红外技术, 2021, 43(7): 649-657. http://hwjs.nvir.cn/article/id/e8541151-1530-4561-ad38-42349b5da1b8

    XUE Xirui, HUANG Shucai, MA Jiashun, et al. RPCA infrared small target detection based on local entropy reference in preprocessing[J]. Infrared Technology, 2021, 43(7): 649-657. http://hwjs.nvir.cn/article/id/e8541151-1530-4561-ad38-42349b5da1b8
    [16]
    ZHANG T, WU H, LIU Y, et al. Infrared small target detection based on non-convex optimization with lp-norm constraint[J]. Remote Sensing, 2019, 11(5): 559. DOI: 10.3390/rs11050559
    [17]
    ZHANG L, PENG Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm[J]. Remote Sensing, 2019, 11(4): 382. DOI: 10.3390/rs11040382
    [18]
    ZHANG Tianfang, PENG Zhenming, WU Hao, et al. Infrared small target detection via self-regularized weighted sparse model[J]. Neurocomputing, 2021, 420: 124-148. DOI: 10.1016/j.neucom.2020.08.065
    [19]
    CHEN C L P, LI H, WEI Y, et al. A local contrast method for small infrared target detection[C]//IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 574-581. Doi: 10.1109/TGRS.2013.2242477.
    [20]
    刘松涛, 刘振兴, 姜宁. 基于融合显著图和高效子窗口搜索的红外目标分割[J]. 自动化学报, 2018, 44(12): 2210−2221 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201812008.htm

    LIU Songtao, LIU Zhenxing, JIANG Ning. Target segmentation of infrared image using fused saliency map and efficient subwindow search[J]. Acta Automatica Sinica, 2018, 44(12): 2210−2221 https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201812008.htm
    [21]
    WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recogn., 2016, 58: 216-226. DOI: 10.1016/j.patcog.2016.04.002
    [22]
    SHI Y F, WEI Y T, YAO H, et al. High-boost-based multiscale local contrast measure for infrared small target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15: 33-37. DOI: 10.1109/LGRS.2017.2772030
    [23]
    HAN JH, LIANG K, ZHOU B, et al. Infrared small target detection utilizing the multiscale relative local contrast measure[J]. IEEE Geosci. Remote Sens. Lett., 2018, 15: 612-616. DOI: 10.1109/LGRS.2018.2790909
    [24]
    XIA C, LI X, ZHAO L, et al. Infrared small target detection based on multiscale local contrast measure using local energy factor[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(1): 157-161. DOI: 10.1109/LGRS.2019.2914432
    [25]
    HAN J, Moradi S, Faramarzi I, et al. A local contrast method for infrared small-target detection utilizing a tri-layer window[J]. IEEE Geoscience and Remote Sensing Letter, 2020, 17(10): 1822-1826 DOI: 10.1109/LGRS.2019.2954578
    [26]
    DENG H, SUN X, LIU M, et al. Infrared small-target detection using multiscale gray difference weighted image entropy[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 60-72. DOI: 10.1109/TAES.2015.140878
    [27]
    HUANG S, LIU Y, HE Y, et al. Structure-adaptive clutter suppression for infrared small target detection: chain-growth filtering[J]. Remote Sensing, 2020, 12(1): 47-69.
  • Related Articles

    [1]MA Xingzhao, TANG Libin, ZUO Wenbin, ZHANG Yuping, JI Rongbin. Research Progress in the Metal Oxide Heterojunction Photodetectors[J]. Infrared Technology , 2024, 46(4): 363-375.
    [2]LI Zhi, TANG Libin, ZUO Wenbin, TIAN Pin, JI Rongbin. Research Progress of Materials and Detectors for Mid-wave Infrared Quantum Dots[J]. Infrared Technology , 2023, 45(12): 1263-1277.
    [3]YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.
    [4]LEI Zengqiang, XU Huiyong, CHENG Gang, SHEN Liangji, CHEN Zhixue. Design of Readout Circuit of Incremental Focusing Encoder Based on CPLD[J]. Infrared Technology , 2020, 42(11): 1037-1041.
    [5]LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419.
    [6]ZHANG Yuping, TANG Libin. Research Progress in Photodetectors Based on Topological Insulators[J]. Infrared Technology , 2020, 42(1): 1-9.
    [7]GAO Run, NIU Chunhui, LI Xiaoying, LYU Yong. Determination Methods and Development Status of Photoelectric Detector Damaged by Strong Laser[J]. Infrared Technology , 2016, 38(8): 636-642.
    [8]KANG Bing-xin, LI Yu, BAI Pi-ji, LIU Hui-ping, WANG Bo. Design of A Novel Current Mirroring Integration Readout Integrated Circuit for Quantum Well Infrared Photodetectors[J]. Infrared Technology , 2012, 34(2): 95-98. DOI: 10.3969/j.issn.1001-8891.2012.02.007
    [9]WANG Yong-pan, GUO Fang-min. Wide Dynamic Range Readout Circuit Design on High Sensitivity Quantum Dot-in-Well Photodetector[J]. Infrared Technology , 2011, 33(6): 336-339. DOI: 10.3969/j.issn.1001-8891.2011.06.006
    [10]ZHAN Guo-zhong, GUO Fang-min, HUANG Jing, ZHU Rong-jing. Research on Control Circuit with Tunable Parameters for Photodetector Readout Circuit[J]. Infrared Technology , 2008, 30(8): 485-488. DOI: 10.3969/j.issn.1001-8891.2008.08.014
  • Cited by

    Periodical cited type(2)

    1. 仝淅哲,申钧. 光导型石墨烯探测器暗电流抑制电路研究. 红外. 2025(02): 1-12 .
    2. 李世龙,焦岗成. 旋涂法制备石墨烯光阴极与测试分析. 红外技术. 2024(12): 1459-1463 . 本站查看

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return