LI Yongtao, HE Yalei, WU Fengling. Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm[J]. Infrared Technology , 2021, 43(9): 889-894.
Citation: LI Yongtao, HE Yalei, WU Fengling. Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm[J]. Infrared Technology , 2021, 43(9): 889-894.

Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm

More Information
  • Received Date: September 10, 2020
  • Revised Date: April 07, 2021
  • At present, fault diagnosis in direct-view low-light-level photo-optical equipment is mainly conducted by manual detection, which is inefficient, error prone (faults will often be missed), and does not create a valid record. This paper proposes an automatic diagnostic method based on machine vision. In this method, a series of special adaptors are designed for developing a reliable connection between the industrial camera and the object to be tested, automatically collecting the images of the eyepiece field of view image of the tested product, and transmitting the monitoring image in real time. We used the Structural SIMilarity (SSIM) algorithm to calculate the similarity between the monitoring images and the template image in real time to automatically warn of abnormalities using a judgment threshold, which is determined in advance. When a failure occurs, the system issues an abnormal warning, generates a detection log, and stores the current monitoring images. Practice shows consistency of the results of our method with those of subjective judgment. Under stable illumination conditions, the accuracy of the diagnostic technique meets the actual requirements.
  • [1]
    何国伟, 许海宝. 可靠性试验技术[M]. 北京: 国防工业出版社, 1995.

    HE Guowei, XU Haibao. Reliability Test Technology[M]. Beijing: National Defense Industry Press, 1995.
    [2]
    邱有成, 解放军总装备部. 可靠性试验技术[M]. 北京: 国防工业出版社, 2003.

    QIU Youcheng, PLA General Armament Department. Reliability Test Technology[M]. Beijign: National Defense Industry Press, 2003.
    [3]
    白晓东, 李洪祚, 宫玉琳. 微光瞄具可靠性试验设备中故障图像判别研究[J]. 长春理工大学学报: 自然科学版, 2014(2): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201402005.htm

    BAI Xiaodong, LI Hongzuo, GONG Yulin. Research on the identification of fault images in the reliability test equipment of low-light sight[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2014(2): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201402005.htm
    [4]
    ZHOU Wang, A C Bovik. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84. DOI: 10.1109/97.995823
    [5]
    ZHOU Wang, A C Bovik, H R Sheikh, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image processing, 2004, 13(4): 600-612. DOI: 10.1109/TIP.2003.819861
    [6]
    XU W, Hauske G. Picture quality evaluation based on error segmentation[J]. Proc SPIE, 1994, 2308(2308): 1454-1465. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=976444
    [7]
    王虹, 潘晓露, 李一民, 等. 一种基于梯度幅度值的图像质量客观评价方法[J]. 光学与光电技术, 2004, 2(6): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD200406007.htm

    WANG Hong, PAN Xiaolu, LI Yimin, et al. An objective evaluation method of image quality based on gradient amplitude value[J]. Optics and Optoelectronic Technology, 2004, 2(6): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD200406007.htm
    [8]
    杨光义, 陈浩, 李梦涵, 等. 基于图像熵的无参考图像质量评价方法: CN109325550A[P]. 2019.

    YANG Guangyi, CHEN Hao, LI Menghan, et al. No-reference image quality evaluation method based on image entropy: CN109325550A[P]. 2019.
    [9]
    倪晓明. 基于小波变换图像质量评价新算法[D]. 厦门: 厦门大学, 2009.

    NI Xiaoming. A new image quality evaluation algorithm based on wavelet transform[D]. Xiamen: Xiamen University, 2009.
    [10]
    叶盛楠, 苏开娜, 肖创柏, 等. 基于结构信息提取的图像质量评价[J]. 电子学报, 2008, 36(5): 856-861. DOI: 10.3321/j.issn:0372-2112.2008.05.005

    YE Shengnan, SU Kaina, XIAO Chuangbai, et al. Image quality assessment based on structural information extraction[J]. Acta Electronica Sinica, 2008, 36(5): 856-861. DOI: 10.3321/j.issn:0372-2112.2008.05.005
    [11]
    马丽红, 龚紫平. 频率与方向敏感SSIM的图像质量评价方法[J]. 计算机工程, 2012, 38(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201205007.htm

    MA Lihong, GONG Ziping. Image Quality Assessment Method for Frequency and Direction Sensitive SSIM[J]. Computer Engineering, 2012, 38(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201205007.htm
    [12]
    闫乐乐, 李辉, 邱聚能, 等. 基于区域对比度和SSIM的图像质量评价方法[J]. 应用光学, 2015, 36(1): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201501012.htm

    YAN Lele, LI Hui, QUI Juneng, et al. Image quality assessment method based on reginal contrast and structural similarity[J]. Journal of Applied Optics, 2015, 36(1): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201501012.htm
    [13]
    王利平, 孙韶远, 陈钱, 等. 微光图像特征分析及图像融合技术研究[J]. 红外与毫米波学报, 2000(4): 289-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200004008.htm

    WANG Liping, SUN Shaoyuan, CHEN Qian, et al. Low-light level image feature analysis and image fusion technology research[J]. Journal of Infrared and Millimeter Waves, 2000(4): 289-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200004008.htm
    [14]
    周燕, 金伟其, 张建勇. 基于人眼视觉的直视型微光成像系统MRC模型[J]. 光学技术, 2006(6): 817-819. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200606004.htm

    ZHOU Yan, JIN Qiwei, ZHANG Jianyong. THE MRC method for watched directly imaging system[J]. Optical Technique, 2006(6): 817-819. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200606004.htm
    [15]
    武英, 王庆宝, 喻春雨. 外界因素对微光图像的影响[J]. 红外与激光工程, 2002(3): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200203008.htm

    WU Ying, WANG Qingbao, YU Chunyu. Effect of external factors on low light level image[J]. Infrared and Laser Engineering, 2002(3): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200203008.htm
  • Related Articles

    [1]LI Wenxuan, HU Yuan, ZHANG Kai, QIN Mingze, YUAN Xiyao. Design of Spaceborne Large Field of View Multispectral Imaging Optical System[J]. Infrared Technology , 2021, 43(11): 1049-1054.
    [2]TAO Liang, ZHAO Jin-song, LIU Chuan-ming, TANG Han, XU Can-jun, ZHAO Qiang, WANG Ya-nan, SU Jun-hong. Design Methods of High Reliability Thermal Imagers[J]. Infrared Technology , 2014, (12): 941-948.
    [3]MENG Rui, QIU Ya-feng. Reliability Analysis and Design of the Shell Based on Portable Dual Sensor Night Vision Goggles[J]. Infrared Technology , 2014, (10): 791-795.
    [4]ZHANG Ying, LIU Su. Reliability Research on Foreign Infrared Focal Plane Assembly[J]. Infrared Technology , 2012, 34(3): 134-139.
    [5]WANG Xin, YANG Bo, DING Xue-zhuan, LIU Yin-nian, WANG Jian-yu. The Optical Design of Shortwave Infrared Imaging Spectrometer in Space[J]. Infrared Technology , 2009, 31(12): 687-690,693. DOI: 10.3969/j.issn.1001-8891.2009.12.002
    [6]LIU Yun-meng, ZHANG Bao-long. Light-weight Design and Application of Two-dimensional Scan Pointer Mirror in Space Remote Sensor[J]. Infrared Technology , 2007, 29(12): 688-691. DOI: 10.3969/j.issn.1001-8891.2007.12.002
    [7]DING Xue-zhuan, LIU Yin-nian, WANG Xin, LAN Wei-hua. Design of Reflective Optic System Used in Aerospace Remote Sensing[J]. Infrared Technology , 2007, 29(5): 253-256. DOI: 10.3969/j.issn.1001-8891.2007.05.002
    [8]Design and Lightweight Research of Cassegrain Drawtube in Space Remote Instrument[J]. Infrared Technology , 2006, 28(5): 253-256. DOI: 10.3969/j.issn.1001-8891.2006.05.002
    [9]Near-Infrared Spectral Measuring system of Milk constituents and its Reliability Thermal design[J]. Infrared Technology , 2003, 25(5): 80-83,85. DOI: 10.3969/j.issn.1001-8891.2003.05.021
  • Cited by

    Periodical cited type(16)

    1. 傅莉,陈广明,席剑辉,胡为. 基于CPO-SVM模型的目标表面发射率求解方法. 无线电工程. 2025(03): 642-648 .
    2. 冯宇涛,刘森辉,李成新,李长久. 长期氧化、表面粗糙度对多元包覆YSZ涂层材料的1300℃窄波段积分发射率的影响规律研究. 热喷涂技术. 2025(01): 84-97 .
    3. 吴宇颂,田博宇,李辉,许兆峰,霍雨佳,符泰然. 半球向全发射率测量实验教学系统设计与开发. 实验技术与管理. 2024(01): 165-170 .
    4. 黄锦冬,史玉豪,陈孟涛,戴彭宇,吴传书,梁博,李圣慧,张航. 金属材料表面发射率测量装置的设计与应用. 河南科技. 2024(08): 44-49 .
    5. 王瑞琴,韩颖,高原. 红外材料光谱发射率与半球发射率测量方法研究. 宇航计测技术. 2024(04): 40-43+81 .
    6. 李延威,李飞,尚新文,肖刘,赵建东,易红霞,舟婕,张明晨,史永康. 热辐射对行波管阴极温度的影响. 强激光与粒子束. 2024(10): 28-39 .
    7. 刘光昱,宦克为,安保林,董伟,赵云龙,宋旭尧,原遵东. 基于积分球反射法的面辐射源发射率分布测量研究. 计量学报. 2023(04): 503-507 .
    8. 袁良,袁林光,董再天,李燕,范纪红,卢飞,赵俊成,张灯,尤越. 高温状态下的材料法向光谱发射率测量. 应用光学. 2023(03): 580-585 .
    9. 孙红胜,梁新刚,马维刚,张宇峰,邱超,马越岗. 基于激光旋转加热的非导电材料高温光谱发射率测试方法与装置. 光谱学与光谱分析. 2022(01): 310-315 .
    10. 马骏,温茂星,周峰. 基于长波红外的高空飞机蒙皮辐射测量方法研究. 红外技术. 2021(03): 284-291 . 本站查看
    11. 梁伟,金华,孟松鹤,杨强,曾庆轩,许承海. 高超声速飞行器新型热防护机制研究进展. 宇航学报. 2021(04): 409-424 .
    12. 潘亚文,吴春法,李宏华,蒋紫韵. 800~1160 K下钢的氧化特性对发射率的影响. 激光与红外. 2021(05): 619-624 .
    13. 张振宇,俞祁浩,方德扬,岳攀,王新斌,陈坤. 寒区大坝心墙土料冻融监测技术及误差分析. 长江科学院院报. 2021(08): 151-158 .
    14. 刘增灿,张群兴,罗中华,邓爱明,张天才. 地面装备红外辐射测量不确定度分析研究. 装备环境工程. 2021(07): 1-6 .
    15. 朱志星,叶林,任宏宇,范博龙. 基于RM-6A红外热敏电阻的发射率在线测量系统研究. 仪表技术与传感器. 2020(11): 74-78+90 .
    16. 康炜. 基于傅里叶红外光谱仪的远红外陶瓷粉法向发射率检测方法. 医疗装备. 2019(03): 44-46 .

    Other cited types(18)

Catalog

    Article views (182) PDF downloads (35) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return