LI Yongtao, HE Yalei, WU Fengling. Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm[J]. Infrared Technology , 2021, 43(9): 889-894.
Citation: LI Yongtao, HE Yalei, WU Fengling. Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm[J]. Infrared Technology , 2021, 43(9): 889-894.

Fault Diagnosis of Reliability Test for Low-Light-Level Vision Device Based on Structural Similarity Algorithm

More Information
  • Received Date: September 10, 2020
  • Revised Date: April 07, 2021
  • At present, fault diagnosis in direct-view low-light-level photo-optical equipment is mainly conducted by manual detection, which is inefficient, error prone (faults will often be missed), and does not create a valid record. This paper proposes an automatic diagnostic method based on machine vision. In this method, a series of special adaptors are designed for developing a reliable connection between the industrial camera and the object to be tested, automatically collecting the images of the eyepiece field of view image of the tested product, and transmitting the monitoring image in real time. We used the Structural SIMilarity (SSIM) algorithm to calculate the similarity between the monitoring images and the template image in real time to automatically warn of abnormalities using a judgment threshold, which is determined in advance. When a failure occurs, the system issues an abnormal warning, generates a detection log, and stores the current monitoring images. Practice shows consistency of the results of our method with those of subjective judgment. Under stable illumination conditions, the accuracy of the diagnostic technique meets the actual requirements.
  • [1]
    何国伟, 许海宝. 可靠性试验技术[M]. 北京: 国防工业出版社, 1995.

    HE Guowei, XU Haibao. Reliability Test Technology[M]. Beijing: National Defense Industry Press, 1995.
    [2]
    邱有成, 解放军总装备部. 可靠性试验技术[M]. 北京: 国防工业出版社, 2003.

    QIU Youcheng, PLA General Armament Department. Reliability Test Technology[M]. Beijign: National Defense Industry Press, 2003.
    [3]
    白晓东, 李洪祚, 宫玉琳. 微光瞄具可靠性试验设备中故障图像判别研究[J]. 长春理工大学学报: 自然科学版, 2014(2): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201402005.htm

    BAI Xiaodong, LI Hongzuo, GONG Yulin. Research on the identification of fault images in the reliability test equipment of low-light sight[J]. Journal of Changchun University of Science and Technology: Natural Science Edition, 2014(2): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CGJM201402005.htm
    [4]
    ZHOU Wang, A C Bovik. A universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-84. DOI: 10.1109/97.995823
    [5]
    ZHOU Wang, A C Bovik, H R Sheikh, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image processing, 2004, 13(4): 600-612. DOI: 10.1109/TIP.2003.819861
    [6]
    XU W, Hauske G. Picture quality evaluation based on error segmentation[J]. Proc SPIE, 1994, 2308(2308): 1454-1465. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=976444
    [7]
    王虹, 潘晓露, 李一民, 等. 一种基于梯度幅度值的图像质量客观评价方法[J]. 光学与光电技术, 2004, 2(6): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD200406007.htm

    WANG Hong, PAN Xiaolu, LI Yimin, et al. An objective evaluation method of image quality based on gradient amplitude value[J]. Optics and Optoelectronic Technology, 2004, 2(6): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD200406007.htm
    [8]
    杨光义, 陈浩, 李梦涵, 等. 基于图像熵的无参考图像质量评价方法: CN109325550A[P]. 2019.

    YANG Guangyi, CHEN Hao, LI Menghan, et al. No-reference image quality evaluation method based on image entropy: CN109325550A[P]. 2019.
    [9]
    倪晓明. 基于小波变换图像质量评价新算法[D]. 厦门: 厦门大学, 2009.

    NI Xiaoming. A new image quality evaluation algorithm based on wavelet transform[D]. Xiamen: Xiamen University, 2009.
    [10]
    叶盛楠, 苏开娜, 肖创柏, 等. 基于结构信息提取的图像质量评价[J]. 电子学报, 2008, 36(5): 856-861. DOI: 10.3321/j.issn:0372-2112.2008.05.005

    YE Shengnan, SU Kaina, XIAO Chuangbai, et al. Image quality assessment based on structural information extraction[J]. Acta Electronica Sinica, 2008, 36(5): 856-861. DOI: 10.3321/j.issn:0372-2112.2008.05.005
    [11]
    马丽红, 龚紫平. 频率与方向敏感SSIM的图像质量评价方法[J]. 计算机工程, 2012, 38(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201205007.htm

    MA Lihong, GONG Ziping. Image Quality Assessment Method for Frequency and Direction Sensitive SSIM[J]. Computer Engineering, 2012, 38(5): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC201205007.htm
    [12]
    闫乐乐, 李辉, 邱聚能, 等. 基于区域对比度和SSIM的图像质量评价方法[J]. 应用光学, 2015, 36(1): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201501012.htm

    YAN Lele, LI Hui, QUI Juneng, et al. Image quality assessment method based on reginal contrast and structural similarity[J]. Journal of Applied Optics, 2015, 36(1): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201501012.htm
    [13]
    王利平, 孙韶远, 陈钱, 等. 微光图像特征分析及图像融合技术研究[J]. 红外与毫米波学报, 2000(4): 289-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200004008.htm

    WANG Liping, SUN Shaoyuan, CHEN Qian, et al. Low-light level image feature analysis and image fusion technology research[J]. Journal of Infrared and Millimeter Waves, 2000(4): 289-292. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200004008.htm
    [14]
    周燕, 金伟其, 张建勇. 基于人眼视觉的直视型微光成像系统MRC模型[J]. 光学技术, 2006(6): 817-819. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200606004.htm

    ZHOU Yan, JIN Qiwei, ZHANG Jianyong. THE MRC method for watched directly imaging system[J]. Optical Technique, 2006(6): 817-819. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200606004.htm
    [15]
    武英, 王庆宝, 喻春雨. 外界因素对微光图像的影响[J]. 红外与激光工程, 2002(3): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200203008.htm

    WU Ying, WANG Qingbao, YU Chunyu. Effect of external factors on low light level image[J]. Infrared and Laser Engineering, 2002(3): 225-228. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200203008.htm
  • Related Articles

    [1]HUANG Jingying, MA Yuying, QIAO Zhiping, HUANG Chengzhang. A 3D Motion Estimation Method of Aerial Targets for Airborne IR Platforms[J]. Infrared Technology , 2025, 47(1): 97-107.
    [2]DONG Qilin, ZHAO Chuangshe, WANG Chao, YUAN Yijie, KONG Peng, WANG Maqiang, GAO Jianjian, LIU Wangang, ZHOU Gendong, CHENG Yongdong, WANG Yi. Translational Motion Compensation of Roll-Pitch Electro-Optical Pod to Ground Targets[J]. Infrared Technology , 2024, 46(11): 1339-1346.
    [3]CAO Yehao, HE Yukun, SHAN Bowen, PENG Yueyang, XIN Hongwei, CHEN Changzheng. Design and Performance Analysis of Focusing and Image Motion Compensation Mechanism for Low Light Level Multispectral Imager[J]. Infrared Technology , 2022, 44(8): 837-845.
    [4]WANG Jian, ZHANG Lei, ZENG Xin, DAI Fang, XU Chunye. Design of Integrated Image Signal Processing Chip for Infrared Detector[J]. Infrared Technology , 2021, 43(11): 1044-1048.
    [5]WANG Kun, SHI Yong, LIU Chichi, XIE Yi, CAI Ping, KONG Songtao. A Review of Infrared Spectrum Modeling Based on Convolutional Neural Networks[J]. Infrared Technology , 2021, 43(8): 757-765.
    [6]LIN Li, LIU Xin, ZHU Junzhen, FENG Fuzhou. Classification of Ultrasonic Infrared Thermal Images Using a Convolutional Neural Network[J]. Infrared Technology , 2021, 43(5): 496-501.
    [7]CHEN Gao, WANG Weihua, LIN Dandan. Infrared Vehicle Target Detection Based on Convolutional Neural Network without Pre-training[J]. Infrared Technology , 2021, 43(4): 342-348.
    [8]TU Jingjie, ZHANG Weipeng, TIAN Si, MIN Chaobo, ZHANG Junju. Unsupervised Evaluation Method for Moving Object Segmentation Based on Motion Texture Difference[J]. Infrared Technology , 2017, 39(6): 541-547.
    [9]HE You-jin, LV Yuan, TAN Wei. Research on Smoke Simulation with Fractional Brownian Motion[J]. Infrared Technology , 2008, 30(11): 660-663. DOI: 10.3969/j.issn.1001-8891.2008.11.010
    [10]A Filtering Algorithm Based on Detecting Motion in Image Sequences[J]. Infrared Technology , 2004, 26(5): 33-36. DOI: 10.3969/j.issn.1001-8891.2004.05.009
  • Cited by

    Periodical cited type(1)

    1. 吕轶,苏龙,蓝晓宇,梁明珅. 基于改进薛定谔滤波的fNIRS信号伪迹去除算法. 电子测量技术. 2024(23): 114-122 .

    Other cited types(0)

Catalog

    Article views (181) PDF downloads (34) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return