GONG Zhiqiang, LIU Renjun, WANG Liqing, PENG Ling, LUO Yin. A High Dynamic Range Compression Technique Based on Infrared Contrast Enhancement[J]. Infrared Technology , 2021, 43(8): 792-797.
Citation: GONG Zhiqiang, LIU Renjun, WANG Liqing, PENG Ling, LUO Yin. A High Dynamic Range Compression Technique Based on Infrared Contrast Enhancement[J]. Infrared Technology , 2021, 43(8): 792-797.

A High Dynamic Range Compression Technique Based on Infrared Contrast Enhancement

More Information
  • Received Date: July 15, 2020
  • Revised Date: October 19, 2020
  • It has always been technically difficult to compress the high dynamic range data collected by an infrared detector to low dynamic range image data, while preserving the image information as much as possible and improving the contrast of the image. To solve this problem, a new infrared image compression method was proposed. In this method, histogram information is introduced, and the pixels of the background and target regions are distinguished by the segmentation of the histogram. Then, the compression model is established. Finally, enhancing the contrast of the image pixels using different coefficients combines the segmented histogram. The algorithm proposed in this paper uses histogram information to distinguish the pixels of the background region and the pixels of the target region and can effectively suppress background noise when enhancing the image contrast. The experimental results show that the proposed algorithm can better highlight details and improve the contrast.
  • [1]
    Silverman J. Display and enhancement of infrared images[C]//Image Processing and its Applications, 1992, International Conference on. IET, 1992.
    [2]
    Rafael C Gonzalez, Richard E Woods. Digital image processing[J]. Prentice Hall International, 2008, 28(4): 484 - 486.
    [3]
    王炳健, 刘上乾, 周慧鑫, 等. 基于平台直方图的红外图像自适应增强算法[J]. 光子学报, 2005, 34(2): 299-301. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB20050200Z.htm

    WANG Bingjian, LIU Shangqian, ZHOU Huixin, et al. Self-adaptive contrast enhancement algorithm for infrared images based on plateau histgrom[J]. Acta Photonica Sinica, 2005, 34(2): 484 - 486. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB20050200Z.htm
    [4]
    宋岩峰, 邵晓鹏, 徐军. 基于双平台直方图的红外图像增强算法[J]. 红外与激光工程, 2008(2): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200802029.htm

    SONG Yanfeng. SHAO Xiaopeng, XU Jun. Infrared image enhancement algorithm based on dual platform histogram[J]. Infrared And Laser Engineering, 2008(2): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200802029.htm
    [5]
    ZUO C, CHEN Q, LIU N. Display and detail enhancement for the visualization of high dynamic range infrared images[J]. Opt. Eng., 2011, 50(12): 127401. DOI: 10.1117/1.3659698
    [6]
    HUANG J, YONG M, YING Z, et al. Infrared image enhancement algorithm based on adaptive histogram segmentation[J]. Applied Optics, 2017, 56(35): 9686. DOI: 10.1364/AO.56.009686
    [7]
    Branchitta F, Diani M, Corsini G, et al. Dynamic-range compression and contrast enhancement in infrared imaging systems[J]. Optical Engineering, 2008, 47(7): 076401.1-076401.14. DOI: 10.1117/1.2956655
    [8]
    Monobe Y, Yamashita H, Kurosawa T, et al. Dynamic range compression preserving local image contrast for digital video camera[J]. IEEE Transactions on Consumer Electronics, 2005, 51(1): 1-10. http://ieeexplore.ieee.org/document/1405691
    [9]
    王园园, 赵耀宏, 罗海波, 等. 海面红外图像的动态范围压缩及细节增强[J]. 红外与激光工程, 2019, 48(1): 307-315. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901045.htm

    WANG Yuanyuan, ZHAO Yaohong, LUO Haibo, et al. Dynamic range compression and detail enhancement of sea-surface infrared image[J]. Infrared and Laser Engineering, 2019, 48(1): 307-315. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201901045.htm
    [10]
    张菲菲. 梯度域处理框架下的图像视见度增强技术研究[D]. 武汉: 武汉大学, 2015.

    WANG Feifei. Study on image visibility enhancement in the framework of gradient domain processing[D]. Wuhan: Wuhan University, 2015.
    [11]
    张临临. 基于图像分层和动态压缩的图像细节增强算法研究[D]. 西安: 西安电子科技大学, 2012.

    ZHANG Linlin. Study on image detail enhancement algorithm based on image stratification and dynamic compression[D]. Xi'an: XIDIAN University, 2012.
    [12]
    单瑞卿, 李斌, 韩伟, 等. 高动态范围红外图像的显示与细节增强[J]. 光学技术, 2019, 45(4): 475-481. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201904016.htm

    SHAN Ruiqing, LI Bin, HAN Wei, et al. Display and detail enhancement for high-dynamic-range infrared images[J]. Optical Technique, 2019, 45(4): 475-481. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS201904016.htm
  • Related Articles

    [1]BAI Xiaofeng, ZHANG Lei, YAN Shijun, QIAN Yunsheng, ZHANG Qin, SU Yue, CHENG Hongchang, CHENG Wei, LI Qi. Measurement of Signal to Noise Ratio of UV Image Intensifier Assembly[J]. Infrared Technology , 2024, 46(11): 1302-1307.
    [2]WANG Jialong, LIU Yanzhen, YANG Xiaokun, HUANG Fuyun, YANG Chaowei, LI Xiongjun. Surface Treatment Method of Near-Stoichiometric Ratio HgCdTe Film[J]. Infrared Technology , 2024, 46(6): 646-653.
    [3]CHANG Shanshan, MA Yunfeng, LIAO Lifen, ZHAO Peng, CHENG Wang, FAN Zhongwei. Measurement of Extinction Ratio of Brewster Angle Polarizer Based on Air Gap Prism[J]. Infrared Technology , 2019, 41(9): 882-886.
    [4]SANG Xueyi, JI Honghu, WANG Ding. Influence of Length-Diameter Ratio and Offset-Diameter Ratio on Performance of Serpentine 2-D Nozzle[J]. Infrared Technology , 2019, 41(5): 443-449.
    [5]Image Fusion Algorithm for Visual and Infrared Image Based on Local Energy Ratio[J]. Infrared Technology , 2008, 30(4): 221-224. DOI: 10.3969/j.issn.1001-8891.2008.04.010
    [6]CHEN Wei-zhen, ZHANG Chun-hua, ZHOU Xiao-dong. A Study on Luminosity Features and Signal Noise Ratio of Space Target[J]. Infrared Technology , 2007, 29(12): 716-719. DOI: 10.3969/j.issn.1001-8891.2007.12.009
    [7]LI Hui, QIAN Yun-sheng, CHANG Ben-kang, LIU Lei, XIA Yang, LI Shi-yi. The Research of K Factor for Signal-to-noise Ratio of LLLIntensifier[J]. Infrared Technology , 2007, 29(8): 488-490. DOI: 10.3969/j.issn.1001-8891.2007.08.015
    [8]PU Li, JIN Wei-qi, LIU Yu-shu, SU Bing-hua, ZHANG Nan. A Study of Wavelet Bi-cubic Ratio Interpolation Algorithm[J]. Infrared Technology , 2006, 28(8): 453-455. DOI: 10.3969/j.issn.1001-8891.2006.08.005
    [9]CHEN Xi, TONG Ming-ming, XING Ji-chuan. A Research on Testing of Optic-crystal Extinction-ratio[J]. Infrared Technology , 2006, 28(7): 388-390. DOI: 10.3969/j.issn.1001-8891.2006.07.004
    [10]Transmission of Two Wave Bands Infrared Radiation Ratio of Aerial Object in the Atmosphere[J]. Infrared Technology , 2003, 25(1): 40-43. DOI: 10.3969/j.issn.1001-8891.2003.01.009
  • Cited by

    Periodical cited type(5)

    1. 杨志勇,王晓伟,杨雨豪,张明娣,张志伟. 分时型长波红外偏振成像系统图像配准研究. 火箭军工程大学学报. 2024(05): 44-52 .
    2. 杨天敏,王晓燕. 偏振图像融合的人脸图像增强研究. 激光杂志. 2023(03): 148-152 .
    3. 宿德志,李慧,刘亮,张纪磊. 分时偏振成像系统旋转角度误差校正. 舰船电子工程. 2023(09): 36-41 .
    4. 马一哲,王世勇,雷腾,李范鸣. 基于连续旋转的准实时偏振探测系统成像模型与误差分析(特邀). 光电技术应用. 2022(05): 82-87+102 .
    5. 张杨,聂亮,陈超,王天澳,史少聪. 基于偏振成像均衡化的目标对比度提升研究. 应用激光. 2022(12): 137-146 .

    Other cited types(4)

Catalog

    Article views (379) PDF downloads (153) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return