Volume 45 Issue 5
May  2023
Turn off MathJax
Article Contents
DONG Kuichen, GUO Liang, HUANG Meijiao, LIU Chunyu. Heat-Dissipation Design for Space Camera High-Power Heat Source[J]. Infrared Technology , 2023, 45(5): 521-526.
Citation: DONG Kuichen, GUO Liang, HUANG Meijiao, LIU Chunyu. Heat-Dissipation Design for Space Camera High-Power Heat Source[J]. Infrared Technology , 2023, 45(5): 521-526.

Heat-Dissipation Design for Space Camera High-Power Heat Source

  • Received Date: 2022-03-18
  • Rev Recd Date: 2022-05-11
  • Publish Date: 2023-05-20
  • To solve the difficulty of selecting an appropriate heat sink for complex heat flows, the design of high-power heat sources for space cameras was investigated based on the design principle of reducing the total heat flow to a heat sink. First, the heat flow to a camera was analyzed according to a space environment. Subsequently, by analyzing the heat flow and working mode of the heat source, the efficiency of heat dissipation from the heat source and the area of the radiant cooling plates were reduced by installing radiant cooling plates on both sides of the camera and coupling them through heat pipes. Finally, the thermal analysis was verified using a thermal simulation software based on the camera's space environment and the thermal control measures taken. The simulation results showed that the temperature of the visible focal plane component was -1.9℃ to 12.9℃, the temperature of the infrared camera circuit board was -1.7℃ to 6.7℃, the temperature of the hot end of the chiller was -12℃ to 0.3℃, and the temperature of the chiller compressor was -11.3℃ to 21.3℃. The temperature index requirements were satisfied, and the problem of heat dissipation from the high-power heat source of the camera under complex heat flow was solved.
  • loading
  • [1]
    李庆林, 徐先锋, 魏志勇, 等. 资源一号02D卫星可见近红外相机技术与验证[J]. 航天器工程, 2020, 29(6): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202006016.htm

    LI Q L, XU X F, WEI Z Y, et al. Design and verification of visible and near-infrared camera for ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC202006016.htm
    [2]
    Aguilar M A, Aguilar F J, Mar Saldaña M, et al. Geopositioning accuracy assessment of GeoEye-1 panchromatic and multispectral imagery[J]. Photogrammetric Engineering & Remote Sensing, 2012, 78(3): 247-257. http://www.onacademic.com/detail/journal_1000039023987410_4f89.html
    [3]
    唐新明, 王鸿燕, 周平, 等. 资源三号卫星数据及产品体系[J]. 卫星应用, 2020(10): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG202010007.htm

    TANG X M, WANG H Y, ZHOU P, et al. ZY-3 satellite data and product system[J]. Satellite Application, 2020(10): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-WXYG202010007.htm
    [4]
    宁献文, 张加迅, 江海, 等. 倾斜轨道六面体卫星极端外热流解析模型[J]. 宇航学报, 2008(3): 754-759. doi:  10.3873/j.issn.1000-1328.2008.03.004

    NING X W, ZHANG J X, JIANG H, et al. Extreme external heat flux analytical model for inclined-orbit hexahedral satellite[J]. Journal of Astronautics, 2008(3): 754-759. doi:  10.3873/j.issn.1000-1328.2008.03.004
    [5]
    郭亮, 吴清文. 光谱成像仪CCD组件的热分析及验证[J]. 光学精密工程, 2009, 17(10): 2440-2444. doi:  10.3321/j.issn:1004-924X.2009.10.014

    GUO L, WU Q W. Thermal design and proof RTests of CCD components in spectral imagers[J]. Optics and Precision Engineering, 2009, 17(10): 2440-2444. doi:  10.3321/j.issn:1004-924X.2009.10.014
    [6]
    訾克明, 吴清文, 李泽学, 等. 空间光学遥感器的热设计实例及其仿真分析[J]. 计算机仿真, 2008, 25(12): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200812023.htm

    ZI K M, WU Q W, LI Z X, et al. Simulation analysis of a space optical remote-sensor's thermal design[J]. Computer Simulation, 2008, 25(12): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ200812023.htm
    [7]
    苗建印. 航天器热控制技术[M]. 北京: 北京理工大学出版社有限责任公司, 2018.

    MIAO J Y. Spacecraft Thermal Control Technology[M]. Beijing: Beijing Institute of Technology Press, 2018.
    [8]
    柏添, 孔林, 黄健, 等. 低倾角轨道微小遥感卫星的热设计及验证[J]. 光学精密工程, 2020, 28(11): 2497-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202011012.htm

    BO T, KONG L, HUANG J, et al. Thermal design and verification of micro remote-sensing satellite in low inclination orbit[J]. Optics and Precision Engineering, 2020, 28(11): 2497-2506. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202011012.htm
    [9]
    李强, 陈立恒. 复杂外热流条件下红外探测器组件热设计[J]. 红外与激光工程, 2016, 45(9): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201609011.htm

    LI Q, CHEN L H. Thermal design of infrared detector components in complex heat flux[J]. Infrared and Laser Engineering, 2016, 45(9): 73-79. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201609011.htm
    [10]
    杨世铭, 陶文铨. 传热学[M]. 北京: 高等教育出版社, 2010.

    YANG S M, TAO W Q. Heat Transfer[M]. Beijing: Higher Education Press, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (147) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return