TONG Xin, CHEN Xiaoping, LI Jiapeng, XIA Ming, HUAI Yang, CHEN Junyuan. Micro-coolers Based on MEMS Technology[J]. Infrared Technology , 2021, 43(2): 104-109.
Citation: TONG Xin, CHEN Xiaoping, LI Jiapeng, XIA Ming, HUAI Yang, CHEN Junyuan. Micro-coolers Based on MEMS Technology[J]. Infrared Technology , 2021, 43(2): 104-109.

Micro-coolers Based on MEMS Technology

More Information
  • Received Date: February 24, 2020
  • Revised Date: January 07, 2021
  • Micro-electro-mechanical systems (MEMS) are a new type of high-tech devices that combine microelectronics and mechanical engineering technology. Their manufacturing process can be highly integrated and conducted at the minimum nanometer scale. MEMS products also require corresponding refrigeration solutions because of their small volume, high integration, high performance, and high heat production. This study focuses on micro-semiconductors and Joule-Thomson (JT) coolers fabricated via MEMS technology that can also be applied to MEMS products. The working principles, performance, and development trends of the micro-coolers are discussed, and the advantages and disadvantages of micro-semiconductors and JT coolers are analyzed, respectively. Additionally, certain suggestions regarding the future development of micro-coolers are provided
  • [1]
    薛淞元. 微机电系统科学与技术发展趋势[J]. 数字技术与应用, 2018, 36(11): 212-213. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJT201811116.htm
    [2]
    Esashi M, Ono T. Micro-nano electromechanical system by bulk silicon micromachining[J]. Optics and Precision Engineering, 2002, 10(6): 608-613. http://www.cnki.com.cn/Article/CJFDTotal-GXJM200206015.htm
    [3]
    刘少波. 新型MEMS致冷器研究[J]. 电子工业专用设备, 2004, 108: 21-25. DOI: 10.3969/j.issn.1004-4507.2004.01.006
    [4]
    吴雷, 高明, 张涛, 等. 热电制冷的应用与优化综述[J]. 制冷学报, 2018, 11(8): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLXB201906001.htm
    [5]
    陈云飞. 基于微纳结构的制冷器[J]. 东南大学学报, 2006, 36(3): 356-360. DOI: 10.3321/j.issn:1001-0505.2006.03.004
    [6]
    阮雷, 吴云峰, 陈镇龙, 等. 半导体超晶格微制冷器的研究进展[J]. 红外, 2007, 28(10): 1-5. DOI: 10.3969/j.issn.1672-8785.2007.10.001
    [7]
    宫昌萌. 基于超晶格的微型热电制冷器[D]. 南京: 东南大学, 2006.
    [8]
    Christofferson J, Vashaee D, Shakouri A. Thermal characterization of thin film superlattice micro refrigerators[C]//IEEE SEMI-THERM Symposium, 2000: 49-54.
    [9]
    Christofferson J, Ezzahri Y, Shakouri A. Transient thermal imaging of pulsed- operation superlattice micro-refrigerators[C]// IEEE SEMI- THERM Symposium, 2009: 45-49.
    [10]
    ZENG Gehong, FAN Xiaofeng, LaBounty C, et al. Cooling power density of SiGe/Si superlattice micro refrigerators[J]. Materials Research Society, 2004, 793: 221-227. http://journals.cambridge.org/article_S1946427400103835
    [11]
    YAO D J, KIM C J, CHEN G. MEMS thermoelectric micro- cooler[C]//International Conference on Thermoelectric, 2001: 401-404.
    [12]
    Goncalves L M, Couto C, Correia J H. Flexible thin-film planar peltier microcooler[C]//International Conference on Thermoelectrics, 2006: 327-331.
    [13]
    Ronggui Y, GANG C, Snyder G J, et al. Multistage thermoelectric micro coolers[C]//Inter Society Conference on Thermal Phenomena, 2002: 323-329.
    [14]
    刘东立, 曹海山, 刘霄, 等. 微型JT制冷机实验研究进展[C]//低温工程大会, 2019: 199-204.

    LIU Dongli, CAO Haishan, LIU Xiao, et al. Experimental development of microminiature JT refrigerators[C]//Cryogenic Engineering Conference, 2019: 199-204.
    [15]
    Little W A. Design considerations for microminiature refrigerators using laminar flow heat exchangers[J]. NSB Speaial Publication, 1981, 607: 154-161. http://www.researchgate.net/publication/285264211_Design_Considerations_for_Microminiature_Refrigerators_Using_Laminar_Flow_Heat_Exchangers
    [16]
    FAN Zhonghui, D Harrison. Micromachining of capillary electro- phoresis injectors and separators on glass chips and evaluation of flow at capillary intersections[J]. Analytical Chemistry, 1994, 66: 177-184. DOI: 10.1021/ac00073a029
    [17]
    P P P M Lerou, G C F Venhorst, C F Berends, et al. Fabrication of a micro cryogenic cold stage using MEMS-technology[J]. Journal of Micromechanics and Microengineering, 2006, 16: 1919-1925. DOI: 10.1088/0960-1317/16/10/002
    [18]
    CAO H S, Mudaliar A V, Derking J H, et al. Design and optimization of a two-stage 28 K Joule-Thomson microcooler[J]. Cryogenics, 2012, 52: 51-57. DOI: 10.1016/j.cryogenics.2011.11.003
    [19]
    CAO H S, Vanapalli S, Holland H J, et al. A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion[J]. International Journal of Refrigeration, 2016, 69: 223-231. DOI: 10.1016/j.ijrefrig.2016.06.023
    [20]
    CAO H S, Vanapalli S, Holland H J, et al. Characterization of a thermoelectric Joule-Thomson hybrid microcooler[J]. Cryogenics, 2016, 77: 36-42. DOI: 10.1016/j.cryogenics.2016.04.012
    [21]
    Little W A. Microminiature refrigeration[J]. American Institute of Physics, 1984: 661-680. DOI: 10.1063/1.1137820
    [22]
    ZHU Weibin, J W Michael, F N Gregory, et al. A Si/Glass bulk -micromachined cryogenic heat exchanger for high heat loads: fabrication, test, and application results[J]. Journal of Microelectromechanical System, 2010, 19(1): 38-47. DOI: 10.1109/JMEMS.2009.2034322
    [23]
    ZHU Weibin, Michael J W, Gregory F N, et al. A Joule-Thomson cooling system with a Si/Glass heat exchanger for 0.1-1 W heat loads[C]//Transducers, 2009: 2417-2420.
    [24]
    ZHU Weibin, Michael J W, Daniel W H, et al. Two approaches to micromachining Si heat exchanger for Joule-Thomson cryosurgical probes[C]//MEMS, 2007: 317-320.
    [25]
    ZHU Weibin, Michael J W, Gregory F N, et al. A perforated plate stacked Si/Glass heat exchanger with In-SITU temperature for Joule-Thomson coolers[C] //MEMS, 2008: 844-847.
    [26]
    Lerou P P P M, Brake H J M, Holland H J, et al. Insight into clogging of micromachined cryogenic coolers[J]. Applied Physics Letters, 2007, 90: 102-104. DOI: 10.1063/1.2472194
    [27]
    Tsai H L, Le P T. Self-sufficient energy recycling of light emitter diode/thermoelectric generator module for its active-cooling application[J]. Energy Conversion and Management, 2016, 118: 170-178. DOI: 10.1016/j.enconman.2016.03.077
    [28]
    LIN Shumin, MA Ming, WANG Jun, et al. Experiment investigation of a two-stage thermoelectric cooler under current pulse operation[J]. Applied Energy, 2016, 180: 628-636. DOI: 10.1016/j.apenergy.2016.08.022
    [29]
    ZHAO Dongliang, TAN Gang. Experimental evaluation of a prototype thermoelectric system integrated with PCM (Phase Change Material) for space cooling[J]. Energy, 2014, 68(4): 658-666. http://www.ingentaconnect.com/content/el/03605442/2014/00000068/00000001/art00070
    [30]
    Derking J, Holland H, Lerou P, et al. Micromachined Joule-Thomson cold stages operating in the temperature range 80-250 K[J]. International Journal of Refrigeration, 2012, 35: 1200-1207. DOI: 10.1016/j.ijrefrig.2012.01.008
  • Related Articles

    [1]XU Haiyang, ZHAO Wei, LIU Jianye. Infrared and Visible Image Registration Algorithm Based on Edge Structure Features[J]. Infrared Technology , 2023, 45(8): 858-862.
    [2]ZHAO Tiancheng, LUO Lyu, YANG Daiyong, LIU He, YUAN Gang, XU Zhihao. A Multi-Attribute Fusion Method for Digitizing Infrared Thermal Characteristics of Power Equipment[J]. Infrared Technology , 2021, 43(11): 1097-1103.
    [3]YIN Aijun, YAO Wenjie. The Evaluation Method and Application of Hidden Markov in Eddy Current Thermal Imaging[J]. Infrared Technology , 2019, 41(12): 1141-1145,1150.
    [4]LI Ruidong, SUN Xiechang, LI Meng. Infrared Feature Extraction and Recognition Technology of Space Target[J]. Infrared Technology , 2017, 39(5): 427-435.
    [5]XU Dehai, WEI Xueming, PENG Yao, MIAO Kang, REN Mingyi. Feature Extraction and Recognition of Ships by an Uncompleted Dictionary[J]. Infrared Technology , 2016, 38(9): 765-769.
    [6]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Based on MRF Combined with Two-algorithm Game[J]. Infrared Technology , 2015, (2): 134-138.
    [7]WANG Kun, ZHANG Kai, WANG Li, ZHUGE Jing-chang. Infrared Image Segmentation Algorithm Based on MRF Combined with the Game-theory[J]. Infrared Technology , 2014, (10): 801-806.
    [8]CHEN Ya-bing, WANG Yong-zhong, WANG Yan-hua. IR Feature Extraction Based on Imbalance Fisher Discrimination[J]. Infrared Technology , 2008, 30(7): 395-398. DOI: 10.3969/j.issn.1001-8891.2008.07.007
    [9]A Tracking Method Based on Curve Fitting Prediction of IR Object[J]. Infrared Technology , 2003, 25(4): 23-25,31. DOI: 10.3969/j.issn.1001-8891.2003.04.006
    [10]Application of the Characteristic Extraction for the Detection of the Internal Micro Bulk Defects in Semiconducting Materials by Near Infrared Laser Scattering Light Distribution Analyze Technology[J]. Infrared Technology , 2002, 24(3): 23-26. DOI: 10.3969/j.issn.1001-8891.2002.03.006
  • Cited by

    Periodical cited type(5)

    1. 曹一青,姚咏儿,沈志娟,吕丽军. 超广角透射式日盲紫外光学系统设计. 量子电子学报. 2024(04): 607-615 .
    2. 司昌田,杨磊,郭程祥,史天翼,谢洪波. 基于衍射元件的宽光谱紫外中继光学系统研究. 应用光学. 2023(03): 476-483 .
    3. 杨代勇,刘赫,林海丹,于群英,列剑平,李易. 电力设备外绝缘放电声-光协同检测及诊断技术. 电瓷避雷器. 2023(06): 209-218 .
    4. 向宇,方航. 机载紫外告警干扰源处理研究. 舰船电子工程. 2022(03): 89-92 .
    5. 陈塑淏,吕博,刘伟奇,冯睿,魏忠伦. 用于电晕检测的日盲紫外成像系统设计. 光子学报. 2022(09): 363-372 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return