Citation: | TONG Xin, CHEN Xiaoping, LI Jiapeng, XIA Ming, HUAI Yang, CHEN Junyuan. Micro-coolers Based on MEMS Technology[J]. Infrared Technology , 2021, 43(2): 104-109. |
[1] |
薛淞元. 微机电系统科学与技术发展趋势[J]. 数字技术与应用, 2018, 36(11): 212-213. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJT201811116.htm
|
[2] |
Esashi M, Ono T. Micro-nano electromechanical system by bulk silicon micromachining[J]. Optics and Precision Engineering, 2002, 10(6): 608-613. http://www.cnki.com.cn/Article/CJFDTotal-GXJM200206015.htm
|
[3] |
刘少波. 新型MEMS致冷器研究[J]. 电子工业专用设备, 2004, 108: 21-25. DOI: 10.3969/j.issn.1004-4507.2004.01.006
|
[4] |
吴雷, 高明, 张涛, 等. 热电制冷的应用与优化综述[J]. 制冷学报, 2018, 11(8): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLXB201906001.htm
|
[5] |
陈云飞. 基于微纳结构的制冷器[J]. 东南大学学报, 2006, 36(3): 356-360. DOI: 10.3321/j.issn:1001-0505.2006.03.004
|
[6] |
阮雷, 吴云峰, 陈镇龙, 等. 半导体超晶格微制冷器的研究进展[J]. 红外, 2007, 28(10): 1-5. DOI: 10.3969/j.issn.1672-8785.2007.10.001
|
[7] |
宫昌萌. 基于超晶格的微型热电制冷器[D]. 南京: 东南大学, 2006.
|
[8] |
Christofferson J, Vashaee D, Shakouri A. Thermal characterization of thin film superlattice micro refrigerators[C]//IEEE SEMI-THERM Symposium, 2000: 49-54.
|
[9] |
Christofferson J, Ezzahri Y, Shakouri A. Transient thermal imaging of pulsed- operation superlattice micro-refrigerators[C]// IEEE SEMI- THERM Symposium, 2009: 45-49.
|
[10] |
ZENG Gehong, FAN Xiaofeng, LaBounty C, et al. Cooling power density of SiGe/Si superlattice micro refrigerators[J]. Materials Research Society, 2004, 793: 221-227. http://journals.cambridge.org/article_S1946427400103835
|
[11] |
YAO D J, KIM C J, CHEN G. MEMS thermoelectric micro- cooler[C]//International Conference on Thermoelectric, 2001: 401-404.
|
[12] |
Goncalves L M, Couto C, Correia J H. Flexible thin-film planar peltier microcooler[C]//International Conference on Thermoelectrics, 2006: 327-331.
|
[13] |
Ronggui Y, GANG C, Snyder G J, et al. Multistage thermoelectric micro coolers[C]//Inter Society Conference on Thermal Phenomena, 2002: 323-329.
|
[14] |
刘东立, 曹海山, 刘霄, 等. 微型JT制冷机实验研究进展[C]//低温工程大会, 2019: 199-204.
LIU Dongli, CAO Haishan, LIU Xiao, et al. Experimental development of microminiature JT refrigerators[C]//Cryogenic Engineering Conference, 2019: 199-204.
|
[15] |
Little W A. Design considerations for microminiature refrigerators using laminar flow heat exchangers[J]. NSB Speaial Publication, 1981, 607: 154-161. http://www.researchgate.net/publication/285264211_Design_Considerations_for_Microminiature_Refrigerators_Using_Laminar_Flow_Heat_Exchangers
|
[16] |
FAN Zhonghui, D Harrison. Micromachining of capillary electro- phoresis injectors and separators on glass chips and evaluation of flow at capillary intersections[J]. Analytical Chemistry, 1994, 66: 177-184. DOI: 10.1021/ac00073a029
|
[17] |
P P P M Lerou, G C F Venhorst, C F Berends, et al. Fabrication of a micro cryogenic cold stage using MEMS-technology[J]. Journal of Micromechanics and Microengineering, 2006, 16: 1919-1925. DOI: 10.1088/0960-1317/16/10/002
|
[18] |
CAO H S, Mudaliar A V, Derking J H, et al. Design and optimization of a two-stage 28 K Joule-Thomson microcooler[J]. Cryogenics, 2012, 52: 51-57. DOI: 10.1016/j.cryogenics.2011.11.003
|
[19] |
CAO H S, Vanapalli S, Holland H J, et al. A micromachined Joule-Thomson cryogenic cooler with parallel two-stage expansion[J]. International Journal of Refrigeration, 2016, 69: 223-231. DOI: 10.1016/j.ijrefrig.2016.06.023
|
[20] |
CAO H S, Vanapalli S, Holland H J, et al. Characterization of a thermoelectric Joule-Thomson hybrid microcooler[J]. Cryogenics, 2016, 77: 36-42. DOI: 10.1016/j.cryogenics.2016.04.012
|
[21] |
Little W A. Microminiature refrigeration[J]. American Institute of Physics, 1984: 661-680. DOI: 10.1063/1.1137820
|
[22] |
ZHU Weibin, J W Michael, F N Gregory, et al. A Si/Glass bulk -micromachined cryogenic heat exchanger for high heat loads: fabrication, test, and application results[J]. Journal of Microelectromechanical System, 2010, 19(1): 38-47. DOI: 10.1109/JMEMS.2009.2034322
|
[23] |
ZHU Weibin, Michael J W, Gregory F N, et al. A Joule-Thomson cooling system with a Si/Glass heat exchanger for 0.1-1 W heat loads[C]//Transducers, 2009: 2417-2420.
|
[24] |
ZHU Weibin, Michael J W, Daniel W H, et al. Two approaches to micromachining Si heat exchanger for Joule-Thomson cryosurgical probes[C]//MEMS, 2007: 317-320.
|
[25] |
ZHU Weibin, Michael J W, Gregory F N, et al. A perforated plate stacked Si/Glass heat exchanger with In-SITU temperature for Joule-Thomson coolers[C] //MEMS, 2008: 844-847.
|
[26] |
Lerou P P P M, Brake H J M, Holland H J, et al. Insight into clogging of micromachined cryogenic coolers[J]. Applied Physics Letters, 2007, 90: 102-104. DOI: 10.1063/1.2472194
|
[27] |
Tsai H L, Le P T. Self-sufficient energy recycling of light emitter diode/thermoelectric generator module for its active-cooling application[J]. Energy Conversion and Management, 2016, 118: 170-178. DOI: 10.1016/j.enconman.2016.03.077
|
[28] |
LIN Shumin, MA Ming, WANG Jun, et al. Experiment investigation of a two-stage thermoelectric cooler under current pulse operation[J]. Applied Energy, 2016, 180: 628-636. DOI: 10.1016/j.apenergy.2016.08.022
|
[29] |
ZHAO Dongliang, TAN Gang. Experimental evaluation of a prototype thermoelectric system integrated with PCM (Phase Change Material) for space cooling[J]. Energy, 2014, 68(4): 658-666. http://www.ingentaconnect.com/content/el/03605442/2014/00000068/00000001/art00070
|
[30] |
Derking J, Holland H, Lerou P, et al. Micromachined Joule-Thomson cold stages operating in the temperature range 80-250 K[J]. International Journal of Refrigeration, 2012, 35: 1200-1207. DOI: 10.1016/j.ijrefrig.2012.01.008
|