YANG Libo, CONG Yan. Modeling and Simulation of Jet-and Wake-Flow-Induced Velocity of Aircraft[J]. Infrared Technology , 2021, 43(10): 940-948.
Citation: YANG Libo, CONG Yan. Modeling and Simulation of Jet-and Wake-Flow-Induced Velocity of Aircraft[J]. Infrared Technology , 2021, 43(10): 940-948.

Modeling and Simulation of Jet-and Wake-Flow-Induced Velocity of Aircraft

More Information
  • Received Date: March 18, 2020
  • Revised Date: April 27, 2020
  • The jet-and wake-flow-induced velocities of aircraft were analyzed in this study. Wake vortex and jet flow models were established, and the induced velocity of the aircraft was simultaneously simulated in the wake flow field. Then, the flow field of the aircraft was computed via computational fluid dynamics(CFD), the results of which were compared with those of the wake vortex models. The comparison showed that the errors computed using the wake vortex models were large, which suggests that the wake flow field should be computed via CFD within 100 m of the aircraft tail; these results are consistent with the CFD results beyond 100 m from the aircraft tail, and the wake vortex models meet the accuracy requirements.
  • [1]
    Proctor F H, Hamilton D W, Switzer G F. TASS driven algorithms for wake prediction[C]//41th AIAA Aerospace Sciences Meeting and Exhibit Reno, 2006: 1-20.
    [2]
    Hinton A, O Connor C J. Development of a wake vortex spacing system for airport capacity enhancement and delay reduction[C]//19th Digital Avionics Systems Conference, 2000, 1: 3E6/1-3E610.
    [3]
    Reimer H M, Vicroy D D. A preliminary study of a wake vortex encounter hazard boundary for a B737-100 airplane[R]. NASA-96-TM110223, 1996: 1-18.
    [4]
    Crichley J B, Foot P B. Analysis of incidents reported between 1972 and 1990[C]//Proceedings of the Aircraft Wake Vortices Conference, 1992: 1-10.
    [5]
    Murphy B, Callaghan O, Fox M. Overview of the structures investigation for the American airline flight 587 investigation[C]//46th AIAA/ASM E/AS-CE/AHS/ ASCStructures, Structural Dynamics & Materials Conference, 2005: 1-9.
    [6]
    Loucel R E, Crouch J D. Flight- simulator study of airplane encounters with perturbed trailing vortices[J]. Journal of Aircraft, 2005, 42(4): 924-931. DOI: 10.2514/1.8556
    [7]
    程学东, 范修宏. 大编队飞行尾流规避研究[J]. 保定学院学报, 2012, 23(3): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-BDSZ201003034.htm

    CHENG Xuedong, FAN Xiuhong. Research on avoiding the wake of the larger formatting[J]. Journal of Baoding University, 2012, 23(3): 104-107. https://www.cnki.com.cn/Article/CJFDTOTAL-BDSZ201003034.htm
    [8]
    魏志强, 徐肖豪. 飞机尾涡流场的建模与仿真计算研究[J]. 交通运输系统工程与信息, 2010, 10(4): 186-191. DOI: 10.3969/j.issn.1009-6744.2010.04.029

    WEI Zhiqiang, XU Xiaohao. Modeling and simulating of flow field for aircraft wake vortex[J]. Journal of Transportation Systems Engineering and Information Technology, 2010, 10(4): 186-191. DOI: 10.3969/j.issn.1009-6744.2010.04.029
    [9]
    黄烁桥, 申功炘, Robert Konrat, 等. 喷流对飞机尾流涡影响的试验研究[J]. 航空学报, 2010, 31(5): 899-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005005.htm

    HUANG Shuoqiao, SHEN Gongxin, ROBERT Konrat, et al. Experimental investigation of influence of jets on aircraft wake vortices[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 899-908. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201005005.htm
    [10]
    周彬, 王雪松, 王涛, 等. 侧向风速对飞机尾流运动的影响[J]. 航空学报, 2009, 30(5): 773-779. DOI: 10.3321/j.issn:1000-6893.2009.05.001

    ZHOU Bin, WANG Xuesong, WANG Tao, et al. Influence of crosswind speeds on aircraft wake vortex movement[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 773-779. DOI: 10.3321/j.issn:1000-6893.2009.05.001
    [11]
    钱翼稷. 空气动力学[M]. 北京: 北京航空航天大学出版社, 2005.

    QIAN Yishe. Aerodynamics[M]. Beijing: Beijing University of Aeronautics and Astronautics Press, 2005.
    [12]
    Laurence H M. ATM decision support tool for wake vortex hazard management combining sensors and modeling[C]//6th AIAA Atmospheric and Space Environments Conference, 2014: doi: 10.2514/6.2014-2332.
    [13]
    Schwarz C, Hahn K U, Fischenberg D. Wake encounter severity assessment based on validated aerodynamic interaction models[C]//AIAA Guidance, Navigation, and Control Conference, 2010: 1-9.
    [14]
    周彬, 王雪松, 王涛, 等. 飞机尾流的介电常数分布特性分析[J]. 微波学报, 2008, 24: 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2008S1008.htm

    ZHOU Bin, WANG Xuesong, WANG Tao, et al. Analysis of the dielectric constant distributing characteristic of aircraft wake vortices[J]. Journal of Microwaves, 2008, 24: 24-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WBXB2008S1008.htm
    [15]
    李大伟, 王宏伦. 自动空中加油阶段加油机尾涡流场建模与仿真[J]. 北京航空航天大学学报, 2010, 36(7): 776-797. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201007006.htm

    LI Dawei, WANG Honglun. Wake vortex effectmodeling and simulation in automated aerial refueling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 776-797. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201007006.htm
    [16]
    Loucel R E, Crouch J D. Flight-simulator study of airplane encounters with perturbed trailing vortices[J]. Journal of Aircraft, 2005, 42(4): 924-931. DOI: 10.2514/1.8556
    [17]
    Proctor F H. Numerical simulation of wake vortices measured during the Idaho falls and Memphis field programs[C]//14th Applied Aerodynamics Conference, 1996: 1-18.
    [18]
    周彬. 飞机尾流的微结构特征及散射特性研究[D]. 长沙: 国防科学技术大学, 2009.

    ZHOU Bin. Study on the microstructure and scattering characteristics of aircraft wake cortices[D]. Changsha: National University of Defense Technology, 2009.
  • Related Articles

    [1]LIU Yongqiu, JIN Zhongqing. Simulation of Air Vehicle Motion Control Models and Infrared Images[J]. Infrared Technology , 2020, 42(9): 863-872.
    [2]ZHANG Peizhong, HU Linting, NING Jingui, SU Weili, ZHANG Peng. Technology of Modeling Near-infrared Region Target[J]. Infrared Technology , 2017, 39(7): 642-647.
    [3]XU Lu-cheng, XIAO Kai-tao. CFD-based Study on Countermeasure Performance of Anti-infrared Smoke Screen[J]. Infrared Technology , 2015, (4): 337-341.
    [4]Study on Simulation Model of Single-wafer Megasonic Cleaning[J]. Infrared Technology , 2015, 37(1): 48-53.
    [5]FENG zhi-wei, CHEN bao-guo, XIANG jing-bo. Study on Jet Thermal Protection Technology of Side-window Based on CFD[J]. Infrared Technology , 2014, (1): 37-41.
    [6]The Simulation of the Moving Magnet Linear Stirling Cryocooler[J]. Infrared Technology , 2009, 31(8): 471-475. DOI: 10.3969/j.issn.1001-8891.2009.08.009
    [7]WANG You-jun, LV Xu-liang, HU Jiang-hua, SHA Jian-jun, HE Chao. Metal Emissivity Forecasting Model Based on SVM[J]. Infrared Technology , 2008, 30(11): 674-676. DOI: 10.3969/j.issn.1001-8891.2008.11.014
    [8]MEI Fei, JIANG Yong, ZHANG Bai-ling, CHEN Shi-guo, CHEN Ge. Jet engine Infrared Signature Modeling and Simulation[J]. Infrared Technology , 2008, 30(11): 638-642. DOI: 10.3969/j.issn.1001-8891.2008.11.005
    [9]Surface Models for NEA Photocathode[J]. Infrared Technology , 2003, 25(1): 68-71,81. DOI: 10.3969/j.issn.1001-8891.2003.01.017
    [10]LI Qing-lin, PI De-fu, ZHOU Shi-yuan. Simple Mathematic Model of Bolometer[J]. Infrared Technology , 2000, 22(3): 16-18,26. DOI: 10.3969/j.issn.1001-8891.2000.03.005
  • Cited by

    Periodical cited type(1)

    1. 何昕,黎泽君,陈亚青,虞启洲. 基于ConvLSTM的飞机发动机喷流时空预测. 航空计算技术. 2024(05): 16-21 .

    Other cited types(1)

Catalog

    Article views (187) PDF downloads (38) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return