Citation: | ZHU Qin, FAN Mingguo, SONG Xinbo, QI Haoze, FANG Liyuan, GUAN Tao, GONG Xiaoxia. High-Performance 512×2-Element Linear InGaAs Short-Wavelength Infrared Focal Plane Detector[J]. Infrared Technology , 2024, 46(7): 826-830. |
To meet with the ongoing demand for high uniformity, low dark current and low-blind pixels of linear InGaAs short-wavelength-infrared focal plane detector in color separation industry, based on MOCVD-grown n-i-n type InP/InGaAs/InP epitaxial materials, a 512×2-element linear InGaAs short-wavelength-infrared focal plane detector was fabricated using diffusion techniques, preparation of the passivation layer, and growth of the electrode. The dark current of this detector was effectively suppressed by optimizing the structure of the detector and the passivation layer technique, Moreover, high reliability and low-blind pixels were achieved by optimizing the parameters of flip-chip interconnection. The detector assembly was tested. The measurement results show a peak detectivity of 1.13×1012 cm⋅Hz1/2/W, dark current density of 12.8 nA/cm2, effective pixel rate higher than 99.5%, and response non-uniformity as low as 0.63% at room temperature (25℃).
[1] |
ZHANG Yonggang, GU Yi, SHAO Xiumei, et al. Short-wave infrared InGaAs photodetectors and focal plane arrays[J]. China Phys. B, 2018, 12: 57-63.
|
[2] |
岳桢干. 比利时Xenics公司研制Proba-V卫星载InGaAs短波红外探测器[J]. 红外, 2013, 34(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201307008.htm
YUE Zhengan. Proba-V Satellite-borne short-wave infrared InGaAs focal plane detector developed by Xenics company in Belgium[J]. Infrared, 2013, 34(7): 19. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201307008.htm
|
[3] |
Hoffman A, Sessler T, Rosbeck J, et al. Megapixel InGaAs arrays for low background applications[C]//Proceedings of SPIE, 2005, 5783: 32-38.
|
[4] |
于春蕾, 龚海梅, 李雪, 等. 2560×2048元短波红外InGaAs焦平面探测器[J]. 红外与激光工程, 2022, 51(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202203057.htm
YU Chunlei, GONG Haimei, LI Xue, et al. 2560×2048 short-wave infrared InGaAs focal plane detector[J]. Infrared and Laser Engineering, 2022, 51(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202203057.htm
|
[5] |
曹高奇. 高灵敏度平面型InGaAs短波红外探测器应用基础研究[D]. 上海: 中国科学院上海技术物理研究所, 2016.
CAO Gaoqi. Study on High Sensitivity Planar InGaAs Short Wavelength Infrared Detector[D]. Shanghai: Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 2016.
|
[6] |
李雪, 邵秀梅, 李淘, 等. 短波红外InGaAs焦平面探测器研究进展[J]. 红外与激光工程, 2020, 49(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm
LI Xue, SHAO Xiumei, LI Tao, et al. Developments of short-wave infrared InGaAs focal plane detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm
|
[7] |
Olsen G H, Joshi A M, Ban V S, et al. Multiplexed 256 element InGaAs detector arrays for 0.8~1.7 μm room temperature operation[C]//Proc. of SPIE, 1988, 972: 279-285.
|
[8] |
董绪丰. 混成式焦平面探测器倒装互连研究[D]. 成都: 电子科技大学, 2014.
DONG Xufeng. The Research of Flip-Chip Bonding Technology about Hybridfocal Plane Array Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
|
[9] |
龚海梅, 张可锋, 唐恒敬, 等. InGaAs近红外线列焦面阵的研制进展[J]. 红外与激光工程, 2009, 38(1): 5-18.
GONG Haimei, ZHANG Kefeng, TANG Hengjing, et al. Developments of near IR linear InGaAs FPAs in China[J]. Infrared and Laser Engineering, 2009, 38(1): 5-18.
|
[1] | ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology , 2022, 44(3): 205-211. |
[2] | GUO Xiangxiang, HAN Penglei. Effect of Orifice Size on Flow Stability of Shape Memory Alloy Self-Regulated Cryocoolers[J]. Infrared Technology , 2021, 43(6): 607-613. |
[3] | ZHAO Heng, CHANG Le, LI Tingtao, WU Yongxiang, ZHAO Xuefeng, LI Xiaofeng. Study on Cs-O Activation Technology of Multi-alkali Photocathode[J]. Infrared Technology , 2018, 40(7): 695-700. |
[4] | NIU Sen, GAO Xiang, LIU Lu, YUAN Yuan, GUO Xin, CHEN Chang, YANG Shuning. Influence of Cs, O Activation on Spectral Response Characteristics of GaAsP Photocathode[J]. Infrared Technology , 2018, 40(2): 189-192. |
[5] | ZHANG Weigang, XU Guoyue, XUE Lianhai. Preparation and Near-infrared Absorption Properties of Polyurethane/Sm2O3 Composite Coatings[J]. Infrared Technology , 2016, 38(2): 102-106. |
[6] | LI Xiao-feng, JIANG Yun-long, LI Jing-wen, JI Ming, LI Jin-sha, ZHANG Qin-dong. Study on Spectral Response beyond Cut off of Cs2Te Ultra Violet Photo Cathode[J]. Infrared Technology , 2015, (12): 1068-1073. |
[7] | LI Xiao-feng, ZHAO Xue-feng, ZHANG Kun-lin, LI Quan-bao, WANG Zhi-hong. Study on Rb2Te(Cs) Solar Blind Ultraviolet Cathode[J]. Infrared Technology , 2013, (9): 581-586. |
[8] | Study on Variation of Work Function and Electron Transition of Multi Alkali Cathode during Cs Activation and Cs-Sb Activation[J]. Infrared Technology , 2013, (4): 202-206. |
[9] | GUO Xiang-yang, CHANG Ben-kang, QIAO Jian-liang, WANG Xiao-hui. Comparison of Stability of GaN and GaAs Photocathode[J]. Infrared Technology , 2010, 32(2): 117-120. DOI: 10.3969/j.issn.1001-8891.2010.02.014 |
[10] | Calculation of Electron Surface Escape Probability of GaAs∶Cs-O NEA Photocathodes[J]. Infrared Technology , 2002, 24(3): 27-30. DOI: 10.3969/j.issn.1001-8891.2002.03.007 |