LYU Weidong, DENG Xuguang, WANG Qianwei, LIAN Minlong, ZHANG Jiushuang, CHEN Ming, GU Deyu, TIAN Dacheng. Infrared Detector Butted Technology for Space[J]. Infrared Technology , 2022, 44(10): 999-1008.
Citation: LYU Weidong, DENG Xuguang, WANG Qianwei, LIAN Minlong, ZHANG Jiushuang, CHEN Ming, GU Deyu, TIAN Dacheng. Infrared Detector Butted Technology for Space[J]. Infrared Technology , 2022, 44(10): 999-1008.

Infrared Detector Butted Technology for Space

More Information
  • Received Date: July 16, 2022
  • Revised Date: September 13, 2022
  • To meet the demand for wide field of view, high-resolution, and multispectral detection in space applications, more large-scale bands and infrared focal plane arrays will be the future trend in space remote sensing. Currently, the scale and band of massive array detectors are limited by the sizes of detector materials and processing technology of silicon; thus, they are unable to meet the space requirements for wide field of view, high-resolution, and multispectral detection. Obtaining large-scale and multiband detectors through butting is a practical solution. In this paper, several butting techniques are discussed, and their properties, key technologies, and capabilities are presented.
  • [1]
    刘兆军, 周峰, 李瑜. 航天光学遥感器对红外探测器的需求分析[J]. 红外与激光工程, 2008, 37(1): 25-29. DOI: 10.3969/j.issn.1007-2276.2008.01.005

    LIU Z J, ZHOU F, LI Y. Demands analysis of IR detectors for space remote sensor[J]. Infrared and Laser Engineering, 2008, 37(1): 25-29. DOI: 10.3969/j.issn.1007-2276.2008.01.005
    [2]
    邱民朴, 马文坡. 空间红外推扫成像系统探测器光学拼接方法[J]. 航天返回与遥感, 2019, 40(6): 51-58. DOI: 10.3969/j.issn.1009-8518.2019.06.007

    QIU M P, MA W P. Optical butting of linear infrared detector array for space pushbroom imaging systems[J]. Spacecraft Recovery and Remote Sensing, 2019, 40(6): 51-58. DOI: 10.3969/j.issn.1009-8518.2019.06.007
    [3]
    Gert Finger, James W Beletic. Review of the state of infrared detectors for astronomy in retrospect of the June 2002 workshop on scientific detectors for astronomy[C]//Proc. of SPIE, 2003, 4841: 839-852.
    [4]
    Philippe Tnbolet, Philippe Chorier. Large infrared focal plane arrays for space applications[J/OL]. [2002-01]. https://www.researchgate.Net/publication/228975841_Large_Infrared_Focal_Plane_Arrays_for_Space_Applications.
    [5]
    Peter J Love, Alan W Hoffman, Ken J Ando, et al. 2K×2K HgCdTe detector arrays for VISTA and other applications[C]//Proc. of SPIE, 2004, 5499: 68-77.
    [6]
    Reinhold J Dorn, Gert Finger, Gotthard Huster, et al. The CRIRES InSb megapixel focal plane array detector mosaic[C]//Proc of SPIE, 2004, 5499: 510-517.
    [7]
    Hall D N B, Luppino G, Hodapp K W, et al. A 4K×4K HgCdTe astronomical camera enabled by the James Webb Space Telescope NIR detector development program[C]//Proc. of SPIE, 2004, 5499: 1-14.
    [8]
    Thomas Sprafke, James W Beletic. High-performance infrared focal plane arrays for space applications[J]. Optics and Photonics News, 2008, 19(6): 22-27. DOI: 10.1364/OPN.19.6.000022
    [9]
    Thorne P, Gordon J, Hipwood L G, et al. 16 megapixel 12 μm array developments at Selex ES[C]//Proc. of SPIE, 2013, 8704: 87042M-1-87042M-9.
    [10]
    Tom Chuh, Markus Loose, David J Gulbransen, et al. Astronomy FPA advancements at Rockwell scientific[C]//Proc. of SPIE, 2006, 6265: 62652K-1-62652K-14.
    [11]
    M Zucker, I Pivnik, E Malkinson, et al. Long mid-wave infrared detector with time delayed integration[C]//Proc. of SPIE, 2003, 4820: 580-592.
    [12]
    Tribolet P, Chatard J P, Costa P, et al. Progress in HgCdTe homojunction infrared detectors[J]. Journal of Crystal Growth, 1998, 184-185: 1262-1271. DOI: 10.1016/S0022-0248(97)00759-8
    [13]
    Robert W Besuner, Christopher J Bebek, Gunther M Haller, et al. A 260 megapixel visible/NIR mixed technology focal plane for space[C]//Proc. of SPIE, 2011, 8155: 81550D-1-81550D-14.
    [14]
    Michael Dahlin. Advanced focal plane array systems for next-generation scanning remote sensing instrument[C]// Proc. of SPIE, 2003, 4820: 406-417.
    [15]
    王成刚, 东海杰, 刘泽巍, 等. "高分五号"卫星多谱段集成TDI线列红外探测器[J]. 航天返回与遥感, 2018, 39(3): 80-84. DOI: 10.3969/j.issn.1009-8518.2018.03.009

    WANG C G, DONG H J, LIU Z W, et al. Development of multispectral TDI linear infrared detector for GF-5 satellite[J]. Spacecraft Recovery and Remote Sensing, 2018, 39(3): 80-84. DOI: 10.3969/j.issn.1009-8518.2018.03.009
    [16]
    李言谨, 陈路, 胡晓宁, 等. 长波红外2048元线列碲镉汞焦平面器件[J]. 红外与毫米波学报, 2009, 28(2): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200902003.htm

    LI Y J, CHEN L, HU X N, et al. Long-wave infrared 2048-elements linear HgCdTe focal plane array[J]. Journal of Infrared and Millimeter Waves, 2009, 28(2): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200902003.htm
    [17]
    Alan W Hoffman, Elizabeth Corrales, Peter J Love, et al. 2K×2K InSb for astronomy[C]//Proc. of SPIE, 2004, 5499: 59-67.
    [18]
    王成刚, 东海杰. 超长线列碲镉汞红外探测器拼接方式对比分析[J]. 激光与红外, 2013, 43(8): 920-923. DOI: 10.3969/j.issn.1001-5078.2013.08.016

    WANG C G, DONG H J. Butted manner analysis of long linear infrared focal plane detectors of MCT[J]. Laser and Infrared, 2013, 43(8): 920-923. DOI: 10.3969/j.issn.1001-5078.2013.08.016
    [19]
    Thorne P, Weller H, Hipwood L G. 12 μm pixel pitch development for 3-side buttable megapixel MW FPAs[C]//Proc. of SPIE, 2012, 8353: 83532J-1-83532J-9.
    [20]
    Peter J Love Alan, Hoffman W, David J Gulbransen, et al. Large-format 0.85-2.5 micron HgCdTe detector arrays for low-background applications [C]// Proceeding of SPIE, 2004, 5167: 134-142.
    [21]
    梅强, 曹学强, 张博文, 等. 空间光学相机焦面拼接热变形对图像配准影响[J]. 航天返回与遥感, 2021, 42(5): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105005.htm

    MEI Q, CAO X Q, ZHANG B W, et al. Analysis of the effect of butting assembly thermal deformation on image registration[J]. Spacecraft Recovery and Remote Sensing, 2021, 42(5): 31-38. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202105005.htm
    [22]
    郭楠, 于波, 夏晨晖, 等. 空间光学相机焦面拼接基座高温度稳定性控制[J]. 航天返回与遥感, 2020, 41(4): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202004009.htm

    GUO N, YU B, XIA C H, et. Temperature control with high stability for the assembly base of space optical cameras[J]. Spacecraft Recovery and Remote Sensing, 2020, 41(4): 64-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HFYG202004009.htm
    [23]
    周峰, 刘冰, 王成刚, 等. 一种红外探测器超大面阵复合拼接方法: CN106813781A[P]. 2017.

    ZHOU F, LIU B, WANG C G, et. A Composite Splicing Method for Super Large Array of Infrared Detectors: CN106813781A[P]. 2017.
    [24]
  • Related Articles

    [1]WU Shengjuan, YAO Libin, LI Dongsheng, JI Yulong, YANG Chunli, LI Hongfu, LUO Min, LI Min, XU Ruihan. Small Pixel 10 μm Pitch Infrared Focal Plane Array ROIC Design[J]. Infrared Technology , 2021, 43(9): 902-909.
    [2]LYU Chongyang, YANG Chengcai, YUAN Honghui. Background Suppression of Readout Circuit Based on Gated Multi-Cycle Integration (GMCI)[J]. Infrared Technology , 2019, 41(3): 239-244.
    [3]BAI Pi-ji, ZHAO Jun, LIU Hui-ping, ZHOU Lian-jun, LI Dong-sheng, YAO Li-bin. Review of ROIC for MCT Dual-band Infrared Focal Plane Arrays[J]. Infrared Technology , 2015, (10): 807-813.
    [4]QUE Long-cheng, LYU Jian, WEI Lin-hai, ZHOU Yun, JIANG Ya-dong. An Infrared Readout Circuit with On-chip Compensation[J]. Infrared Technology , 2015, (2): 101-104.
    [5]CHEN Xiao, LI Yu, BAI Pi-Ji. The Readout Integrated Circuit Based on Pixel Accumulation[J]. Infrared Technology , 2012, 34(1): 10-15. DOI: 10.3969/j.issn.1001-8891.2012.01.003
    [6]TANG Ju, LU Wen-gao, CHEN Zhong-jian, JI Li-jiu, ZHANG Xin. 288×4 IRFPA ROIC with TDI[J]. Infrared Technology , 2007, 29(4): 206-210. DOI: 10.3969/j.issn.1001-8891.2007.04.005
    [7]Skill Analysis of Readout Intergrated Circuits of IRFPA[J]. Infrared Technology , 2004, 26(2): 23-28. DOI: 10.3969/j.issn.1001-8891.2004.02.006
    [8]A ROIC Signal Acquistion System Based on PCI Bus[J]. Infrared Technology , 2002, 24(5): 30-33. DOI: 10.3969/j.issn.1001-8891.2002.05.008
    [9]The Application of Current-Mode Technique in CMOS ROIC[J]. Infrared Technology , 2002, 24(2): 30-33. DOI: 10.3969/j.issn.1001-8891.2002.02.008
    [10]LIU Cheng-kang, LI Bing, WANG Tao, YUAN Xang-hui. Status of CMOS ROIC for Cooled IRFPA[J]. Infrared Technology , 2000, 22(4): 39-41,46. DOI: 10.3969/j.issn.1001-8891.2000.04.010

Catalog

    Article views (303) PDF downloads (169) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return