Citation: | XIE Wenxin, MA Wei, DU Xuexue, NI Jiamin, YIN Chenbo. Thermal Imaging Technology for Metal Structure Defects of Lifting Machinery[J]. Infrared Technology , 2022, 44(7): 741-749. |
[1] |
周俊光. 浅谈起重机械安全隐患及缺陷[J]. 智能城市, 2019, 5(6): 176-177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCS201906111.htm
ZHOU Junguang. Talking about the hidden dangers and defects of hoisting machinery[J]. Intelligent City, 2019, 5(6): 176-177. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCS201906111.htm
|
[2] |
贾文晶. 基于红外图像处理的钢轨裂纹检测研究[D]. 兰州: 兰州交通大学, 2017.
JIA Wenjing. Research on Rail Crack Detection Based on Infrared Image Processing[D]. Lanzhou: Lanzhou Jiaotong University, 2017.
|
[3] |
Avdelidis N P, Almond D P, Dobbinson A, et al. Aircraft composites assessment by means of transient thermal NDT[J]. Progress in Aerospace Sciences, 2004, 40(3): 143-162. DOI: 10.1016/j.paerosci.2004.03.001
|
[4] |
MIAN A, HAN X, Islam S. Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique[J]. Composites Science & Technology, 2004, 64(5): 657-666.
|
[5] |
ZOU H, HUANG F Z. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography[J]. Infrared Physics and Technology, 2015, 73: 29-35. DOI: 10.1016/j.infrared.2015.08.019
|
[6] |
秦雷, 刘俊岩, 龚金龙, 等. 超声红外锁相热像技术检测金属板材表面裂纹[J]. 红外与激光工程, 2013, 42(5): 1123-1130. DOI: 10.3969/j.issn.1007-2276.2013.05.003
QIN Lei, LIU Junyan, GONG Jinlong, et al. Testing surface crack defects of sheet metal with ultrasoniclock-in thermography[J]. Infrared and Laser Engineering, 2013, 42(5): 1123-1130. DOI: 10.3969/j.issn.1007-2276.2013.05.003
|
[7] |
胡海林, 任煜文, 郭迪, 等. 基于红外热成像的物体缺陷检测方法研究[J]. 沈阳理工大学学报, 2020, 39(2): 83-89.
HU Hailin, REN Yuwen, GUO Di, et al. Research on object defect detection method based on infrared thermal imaging[J]. Journal of Shenyang Ligong University. 2020, 39(2): 83-89.
|
[8] |
Chatterjee K, Tuli S, Pickering S G, et al. A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniques[J]. NDT and E International, 2011, 44(7): 655-667. DOI: 10.1016/j.ndteint.2011.06.008
|
[9] |
Moskovchenko A I, Vavilov V P, Bernegger R, et al. Detecting delaminations in semitransparent glass fiber composite by using pulsed infrared thermography[J]. Journal of Nondestructive Evaluation, 2020, 39(3): 69. DOI: 10.1007/s10921-020-00717-x
|
[10] |
Marinetti S, Vavilov V. Thermographic detection and characterization of hidden corrosion in metals: General analysis[J]. Corrosion Science, 2009, 52(3): 865-872.
|
[11] |
Subhani S, Suresh B, Ghali VS. Orthonormal projection approach for depth-resolvable subsurface analysis in non-stationary thermal wave imaging[J]. Insight, 2016, 58(1): 42-45. DOI: 10.1784/insi.2016.58.1.42
|
[12] |
张勇, 张金玉, 黄建祥. 基于红外热波检测理论模型的红外热像数据拟合方法[J]. 红外, 2012, 33(4): 38-41. DOI: 10.3969/j.issn.1672-8785.2012.04.007
ZHANG Yong, ZHANG Jinyu, HUANG Jianxiang. Infrared thermal imaging data fitting method based ontheoretical model of infrared thermal wave detection[J]. Infrared, 2012, 33(4): 38-41. DOI: 10.3969/j.issn.1672-8785.2012.04.007
|
[13] |
Kaur K, Mulaveesala R. Experimental investigation on noise rejection capabilities of pulse compression favourable frequency-modulated thermal wave imaging[J]. Electronics Letters, 2019, 55(6): 352. DOI: 10.1049/el.2018.8047
|
[14] |
Koltsov P P. Comparative analysis of image processing algorithms[J]. Pattern Recognition and Image Analysis, 2012, 22(1): 39. DOI: 10.1134/S1054661812010245
|
[15] |
张德丰. 数字图像处理(MATLAB版)[M]. 北京: 人民邮电出版社, 2015.
ZHANG Defeng. Digital Image Processing (MATLAB)[M]. Beijing: Posts & Telecom Press Co. . LTD, 2015.
|
[16] |
陈观应. 基于机器视觉的干电池缺陷并行检测方法研究[D]. 广州: 广东工业大学, 2016.
CHEN Guanying. Research of Battery Defects Parallel Detecting Methods Based on Machine Vision[D]. Guangdong: Guangdong University of Technology, 2016.
|
[17] |
Arunmuthu K, Kumar P A, Saravanan T. Image processing of radiographs of tube-to-tubesheet weld joints for enhanced detectability of defects[J]. Insight, 2008, 50(6): 298-303. DOI: 10.1784/insi.2008.50.6.298
|
[18] |
XUE J H, ZHANG Y J. Ridler and Calvard's, Kittler and Illingworth's and Otsu's methods for image thresholding[J]. Pattern Recognition Letters, 2012, 33(6): 793-797. DOI: 10.1016/j.patrec.2012.01.002
|
[19] |
LEE W Y, KIM Y W, KIM S Y. Edge detection based on morphological amoebas[J]. Imaging Science Journal, 2012, 60(3): 172-183. DOI: 10.1179/1743131X11Y.0000000013
|
[20] |
朱光忠, 黄云龙, 余世明. 边缘检测算子在汽车牌照区域检测中的应用[J]. 计算机技术与发展, 2006(3): 161-162. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ200603056.htm
ZHU Guangzhong, HUANG Yunlong, YU Shiming. Application of edge detection operators in regiondetection of automobile license plate[J]. Computer Technology and Development, 2006(3): 161-162. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ200603056.htm
|
[21] |
杜雪雪, 殷晨波, 童欣, 等. 红外热成像技术在大型起重机械金属裂纹探伤中的应用[J]. 现代制造工程, 2021(4): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY202104023.htm
DU Xuexue, YIN Chenbo, TONG Xin, et al. Application of infrared thermal imaging technology in metal crackdetection of large lifting machinery[J]. Modern Manufacturing Engineering, 2021(4): 121-125. https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY202104023.htm
|
[1] | DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470. |
[2] | XU Guangxian, WANG Zemin, MA Fei. Hyperspectral Mixed Noise Image Restoration Based on Non-Convex Low-Rank Tensor Decomposition and Group Sparse Total Variation[J]. Infrared Technology , 2024, 46(9): 1025-1034. |
[3] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[4] | WU Lingxiao, KANG Jiayin, JI Yunxiang. Infrared and Visible Image Fusion Based on Guided Filter and Sparse Representation in NSST Domain[J]. Infrared Technology , 2023, 45(9): 915-924. |
[5] | LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713. |
[6] | SUN Bin, ZHUGE Wuwei, GAO Yunxiang, WANG Zixuan. Infrared and Visible Image Fusion Based on Latent Low-Rank Representation[J]. Infrared Technology , 2022, 44(8): 853-862. |
[7] | ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293. |
[8] | MEI Jiacheng, WANG Rui, YE Hanmin. Compressive Fusion and Target Detection Based on Sparse Representation[J]. Infrared Technology , 2016, 38(3): 218-224. |
[9] | SONG Bin, WU Le-hua, TANG Xiao-jie, WEN Yu-qiang, MOU Yu-fei. An Image Fusion Algorithm Based on DCT Sparse Representation and Dual-PCNN[J]. Infrared Technology , 2015, (4): 283-288. |
[10] | SUN Jun-ding, ZHAO Hui-hui. Sparse Representation and Applications in Image Processing[J]. Infrared Technology , 2014, (7): 533-537. |