WEI Qi, LI Jie, QIU Xuanbing, MA Jin, LI Shuaiwei, GUO Guqing, LI Chuanliang, SHANG Jianping. Portable Dry Eye Diagnosis Instrument Using Near-infrared Image Procession[J]. Infrared Technology , 2023, 45(2): 217-222.
Citation: WEI Qi, LI Jie, QIU Xuanbing, MA Jin, LI Shuaiwei, GUO Guqing, LI Chuanliang, SHANG Jianping. Portable Dry Eye Diagnosis Instrument Using Near-infrared Image Procession[J]. Infrared Technology , 2023, 45(2): 217-222.

Portable Dry Eye Diagnosis Instrument Using Near-infrared Image Procession

More Information
  • Received Date: July 15, 2021
  • Revised Date: August 25, 2021
  • To address the limitations of current dry eye diagnostic equipment in the market, such as high cost, large volume, and low accuracy of detection results due to the use of the frame difference method, this study proposes portable dry eye diagnostic equipment based on near-infrared images. The device, which uses a Windows computer based on near-infrared imaging, is portable and can be used to detect dry eye symptoms such as the tear film break-up time (TBUT), meibomian gland (MG), and tear meniscus height (TMH). The fractal box dimension method was used to detect TBUT to avoid the inaccuracy of the frame difference method. MG was detected using near-infrared (850 nm) fill light imaging technology, and the contrast limited adaptive histogram equalization (CLAHE) algorithm was used to highlight the gland region, which can detect the area missing rate more accurately. To verify the accuracy of the test results, 50 samples were tested and compared with the CSO Antares instrument from Italy and the ICP OSA from SBM. The correlation coefficient between the TBUT and TMH measurements of the device and the results of the two controls was P < 0.05, whereas the detection results were consistent; the accuracy and specificity of MG were 86% and 84%, respectively. The experimental results showed that the device can be used as a screening and diagnostic device for dry eye disease in eye and vision optics centers.
  • [1]
    孙铁, 石文卿, 邵毅. 干眼成像技术的研究进展[J]. 国际眼科杂志, 2019, 19(6): 937-940. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK201906014.htm

    SUN T, SHI W Q, SHAO Y. Research progress on dry eye imaging technology[J]. International Eye Science (IES), 2019, 19(6): 937-940. https://www.cnki.com.cn/Article/CJFDTOTAL-GJYK201906014.htm
    [2]
    余婷, 叶芬, 施宇华, 等. 睑板腺功能障碍患者的视觉质量分析[J]. 眼科新进展, 2017, 37(10): 966-969. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201710019.htm

    YU T, YE F, SHI Y H, et al. Evaluation of visual quality in patients with meibomian gland dysfunction[J]. Recent Advances in Ophthalmology, 2017, 37(10): 966-969. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201710019.htm
    [3]
    王蕊, 李岩, 高建民, 等. 干眼患者泪膜及睑板腺功能分析[J]. 眼科新进展, 2016, 36(12): 1145-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201612013.htm

    WANG R, LI Y, GAO J M, et al. Assessment of tear film and meibomian gland function in dry eye patients[J]. Recent Advances in Ophthalmology, 2016, 36(12): 1145-1149. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201612013.htm
    [4]
    诸科璇, 谢文加, 应靖璐, 等. 运用Keratograph 5M眼表综合分析仪评价干眼患者的泪膜及睑板腺功能[J]. 浙江大学学报(医学版), 2016, 45(4): 422-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYB201604019.htm

    ZHU K X, XIE W J, YING J L, et al. Evaluation of tear film and meibomian gland function in dry eye patients using Keratograph[J]. Journal of Zhejiang University (Medical Science), 2016, 45(4): 422-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYB201604019.htm
    [5]
    宁玉贤, 赵少贞. 非侵入性眼表综合分析仪及Lipiview眼表面干涉仪评估儿童干眼的特点[J]. 眼科新进展, 2019, 39(1): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201901018.htm

    NING Y X, ZHAO S Z, Evaluation of dry eye in children by Keratograph 5 M and lipiview ocular surface interometry[J]. Recent Advances in Ophthalmology, 2019, 39(1): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XKJZ201901018.htm
    [6]
    Lee J S, Jun I, Kim E K, et al. Clinical accuracy of an advanced corneal topographer with tear-film analysis in functional and structural evaluation of dry eye disease[J]. Seminars in ophthalmology, 2020, 35(2): 134-140. DOI: 10.1080/08820538.2020.1755321
    [7]
    李萌萌, 张晓峰, 阙丽娟, 等. 睑板腺红外线成像装置两种图像分析方法的比较[J]. 中国现代医药杂志, 2016, 18(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHTY201602003.htm

    LI M M, ZHANG X F, QUE L J, YIN Y C, et al. Comparison of the two methods of image analysis of infrared meibography[J]. Modern Medicine Journal of China, 2016, 18(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHTY201602003.htm
    [8]
    顾可可, 付威威, 董月芳, 等. 基于改进轮廓跟踪的瞳孔快速检测[J]. 红外技术, 2017, 39(6): 574-578. http://hwjs.nvir.cn/article/id/hwjs201706017

    GU K K, FU W W, DONG Y F, et al. Rapid pupil detection based on improved contour tracking[J]. Infrared Technology, 2017, 39(6): 574-578. http://hwjs.nvir.cn/article/id/hwjs201706017
    [9]
    Ratprakhon K, Neubauer W, Riehn K, et al. Developing an automatic color determination procedure for the quality assessment of mangos (Mangifera indica) using a CCD camera and color standards[J]. Foods, 2020, 9(11): 1709.
    [10]
    段一平, 李浩攀. MATLAB在图像处理中的应用[J]. 科技信息, 2009(10): 213-214. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX200826081.htm

    DUAN Y P, LI H P. Application of MATLAB in image processing[J]. Scientific and Technological Information, 2009(10): 213-214. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX200826081.htm
    [11]
    贾迪, 孟绿, 张一飞, 等. 一种彩色图像的同步去噪增强算法[J]. 小型微型计算机系统, 2014, 35(3): 659-662. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201403048.htm

    JIA D, MENG L, ZHANG Y F, et al. Synchronization algorithm of color image denoising and enhancement[J]. Journal of Chinese Computer Systems, 2014, 35(3): 659-662. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201403048.htm
    [12]
    王红茹, 李瑞, 王佳. 基于改进CLAHE的水下彩色图像增强算法[J]. 舰船电子工程, 2019, 39(11): 119-122, 141. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201911030.htm

    WANG H R, LI R, WANG J. Underwater color image enhancement algorithm based on improved CLAHE[J]. Ship Electronic Engineering, 2019, 39(11): 119-122, 141. https://www.cnki.com.cn/Article/CJFDTOTAL-JCGC201911030.htm
    [13]
    罗强, 吴俊峰, 于红, 等. 一种基于改进直方图均衡化的显著图提取算法[J]. 小型微型计算机系统, 2018, 39(5): 1092-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201805041.htm

    LUO Q, WU J F, YU H, et al. Saliency detection algorithm based on improved histogram equalization[J]. Journal of Chinese Computer Systems, 2018, 39(5): 1092-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX201805041.htm
    [14]
    Llorens-Quintana C, Iskander D R. Assessment of tear film using videokeratoscopy based on fractal dimension[J]. Optom. Vis. Sci., 2018, 95(1): 32-42.
    [15]
    Alonso-Caneiro D, Szczesna-Iskander D H, Iskander D R, et al. Application of texture analysis in tear film surface assessment based on videokeratoscopy[J]. Journal of Optometry, 2013, 6(4): 185-193.
    [16]
    Bisoi A K, Mishra J. On calculation of fractal dimension of images[J]. Pattern Recognition Letters, 2001, 22(6-7): 631-637.
    [17]
    Koprowski R, TIAN L, Olczyk P. A clinical utility assessment of the automatic measurement method of the quality of Meibomian glands[J]. Biomedical Engineering Online, 2017, 16(1): 82.
    [18]
    Bartuzel M M, Szczesna-Iskander D H, Iskander D R. Automatic dynamic tear meniscus measurement in optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(8): 2759-2768.
    [19]
    Szczesna-Iskander D H, Alonso-Caneiro D, Iskander D R. Objective measures of pre-lens tear film dynamics versus visual responses[J]. Optometry & Vision Science Official Publication of the American Academy of Optometry, 2016, 93(8): 872-80.
    [20]
    陈娟, 梅芳, 陈志钧. 儿童泪膜破裂时间与瞬目异常的临床研究[J]. 南京医科大学学报, 2019, 39(12): 1816-1819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYZ201214046.htm

    CHEN J, MEI F, CHEN Z J. Clinical study of tear film rupture time and blink abnormality in children[J]. Journal of Nanjing Medical University(Natural Sciences), 2019, 39(12): 1816-1819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYZ201214046.htm
  • Related Articles

    [1]XU Shiwen, WANG Heng, ZHANG Hua, PANG Jie. Human Fall Detection Method Based on Key Points in Infrared Images[J]. Infrared Technology , 2021, 43(10): 1003-1007.
    [2]ZHANG Zhipeng, SHAO Xuejun, PANG Qing. Research on the Key Technology of 3D Laser Inverted Scanning[J]. Infrared Technology , 2021, 43(8): 752-756.
    [3]A Method of Object Tracking Based on Feature Point Matching[J]. Infrared Technology , 2016, 38(7): 597-601.
    [4]ZHAO De-li, ZHU You-pan, LI Yan, ZENG Bang-ze, PAN Chao, LUO Lin, WU Cheng. Investigation on Infrared and Low Light Level Image Registration Algorithm Based on Point Feature and Freeman Chain Code[J]. Infrared Technology , 2015, (6): 467-471.
    [5]ZHAO De-li, ZHU You-pan, WU Cheng, LI Ze-min, ZENG Bang-ze, LUO Lin, YANG Peng-wei, WANG Bing, LI Yan. Investigation on Improved Infrared Image Registration Algorithm Based on Point Feature and Gray Feature[J]. Infrared Technology , 2014, (10): 820-826.
    [6]YU Hong-sheng, JIN Wei-qi. SIFT Key-points Self-adaptive Extraction Algorithm for Video Images[J]. Infrared Technology , 2013, (12): 768-772.
    [7]YANG Li, YANG Hua. The Key Techniques and Applications of Infrared False Target[J]. Infrared Technology , 2006, 28(9): 531-534. DOI: 10.3969/j.issn.1001-8891.2006.09.009
    [8]ZHAO Qin, ZHOU Tao, SHU Qin. Discussion of Image Registration Based on Feature Points[J]. Infrared Technology , 2006, 28(6): 327-330. DOI: 10.3969/j.issn.1001-8891.2006.06.005
    [9]Study on the Key Techniques of the Imaging Infrared Guidance for AAM[J]. Infrared Technology , 2003, 25(4): 45-48. DOI: 10.3969/j.issn.1001-8891.2003.04.011
    [10]Modification of the Infrared Point Measurement for Temperature[J]. Infrared Technology , 2002, 24(3): 49-51,55. DOI: 10.3969/j.issn.1001-8891.2002.03.013
  • Cited by

    Periodical cited type(2)

    1. 邢志坤. 基于LabVIEW的变电站移动机器人轨迹跟踪虚拟仿真系统设计. 自动化与仪表. 2024(07): 67-71 .
    2. 李辉,余大成,陈耀. 基于OWA算子和CWAA算子的变电站巡视周期优化. 广西电力. 2024(05): 50-54 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return