YANG Qingyu, WANG Yongrang, LI Hao, TANG Shanjun, LI Fang, ZHANG Guohua. Adaptive Detection and Tracking Algorithm for Infrared Target Size Variation[J]. Infrared Technology , 2022, 44(11): 1176-1185.
Citation: YANG Qingyu, WANG Yongrang, LI Hao, TANG Shanjun, LI Fang, ZHANG Guohua. Adaptive Detection and Tracking Algorithm for Infrared Target Size Variation[J]. Infrared Technology , 2022, 44(11): 1176-1185.

Adaptive Detection and Tracking Algorithm for Infrared Target Size Variation

More Information
  • Received Date: July 02, 2022
  • Revised Date: August 09, 2022
  • In an actual scenario, as the detection distance decreases, the size of the infrared weak and small targets increases dynamically. Commonly used infrared weak and small target detection and tracking algorithms cannot continue to detect and track stably. To address these problems, we propose an adaptive infrared target size change detection and tracking method. The initial screening of weak and small targets is realized with the help of a low threshold signal-to-noise ratio and circumvents the missed detection and false detection of large targets via adaptive size segmentation. Subsequently, we built an alternative target library. Finally, the Kalman algorithm model was adopted to predict the motion trajectory, complete the small-scale wave-gate detection, and realize target tracking. Compared with the DBT conventional detection and tracking algorithm, our method considers the detection and tracking of weak and small targets and large-sized targets simultaneously. In the selected scene, where the target size dynamically increases, the detection and tracking rate of the algorithm in this study is improved by approximately 10%.
  • [1]
    BAI Xiangzhi, ZHANG Shan, DU Binbin, et al. Survey on dim small target detection in clutter background: wavelet, inter-frame and filter based algorithms[J]. Procedia Engineering, 2011, 15: 479-483. DOI: 10.1016/j.proeng.2011.08.091
    [2]
    MING Z, LI J, ZHANG P. The design of Top-Hat morphological filter and application to infrared target detection[J]. Infrared Physics & Technology, 2006, 48(1): 67-76.
    [3]
    FAN Q, YANG Y, ZOU E B. A novel infrared target detection and tracking method[C]// Seventh Symposium on Novel Photoelectronic Detection Technology and Application, 2020: 117631L.
    [4]
    王莹莹, 张永顺, 华永伟. 红外目标检测方法分析[J]. 红外技术, 2011, 33(3): 133-140. DOI: 10.3969/j.issn.1001-8891.2011.03.002

    WANG Y Y, ZHANG Y S, HUA Y W. Analysis on infrared target detection methods[J]. Infrared Technology, 2011, 33(3): 133-140. DOI: 10.3969/j.issn.1001-8891.2011.03.002
    [5]
    王翔. 一种复杂海空背景下的红外小目标检测跟踪算法[J]. 光学与光电技术, 2022, 20(2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202202014.htm

    WANG X. A detection and tracking algorithm for infrared small target in complex sea sky background[J]. Optics & Optoelectronic Technology, 2022, 20(2): 113-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGD202202014.htm
    [6]
    ZHAO T, WANG T, CAO Y, et al. Infrared dim and small target detection and tracking based on single multi-frame algorithm under sea clutter background[C]// 2019 Chinese Control Conference (CCC), 2019: 402-407.
    [7]
    郭伟, 赵亦工, 谢振华. 一种改进的红外图像归一化互相关匹配算法[J]. 光子学报, 2009, 38(1): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200901040.htm

    GUO W, ZHAO Y G, XIE Z H. An Improved normalized cross-correlation for template matching of infrared image[J]. Acta Photonica Sinica, 2009, 38(1): 189-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200901040.htm
    [8]
    张晋, 王元余, 林丹丹, 等. 基于相关滤波的红外目标跟踪抗遮挡处理[J]. 红外技术, 2022, 44(3): 277-285. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202203015.htm

    ZHANG J, WANG Y Y, LIN D D, et al. Anti-occlusion process of infrared target tracking based on correlation filters[J]. Infrared Technology, 2022, 44(3): 277-285. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202203015.htm
    [9]
    王曙光, 石胜斌, 胡春生. 一种对空红外弱小目标检测跟踪方法研究[J]. 红外技术, 2020, 42(4): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202004008.htm

    WANG Y G, SHI S B, HU C S. Detection and tracking method for infrared dim small targets in air[J]. Infrared Technology, 2020, 42(4): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202004008.htm
    [10]
    杨昳, 徐长彬, 马玉莹, 等. 低信噪比下的红外弱小目标检测算法研究综述[J]. 激光与红外, 2019, 49(6): 643-649. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201906002.htm

    YANG Y, XU C B, MA Y Y, et al. A review of infrared dim small target detection algorithms with low SNR[J]. Laser & Infrared, 2019, 49(6): 643-649. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201906002.htm
    [11]
    宋敏敏, 王爽, 吕弢, 等. 一种天地复杂背景下的红外弱小目标检测方法[J]. 红外技术, 2018, 40(10): 996-1001. http://hwjs.nvir.cn/article/id/hwjs201810011

    SONG M M, WANG S, LYU T, et al. A method for infrared dim target detection in complex scenes of sky and ground[J]. . Infrared Technology, 2018, 40(10): 996-1001 http://hwjs.nvir.cn/article/id/hwjs201810011
    [12]
    施元斌, 张晓杰, 王兴. 基于梯度和各向异性扩散的红外双波段目标检测方法[J]. 空天防御, 2021, 4(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KTFY202104014.htm

    SHI Y B, ZHANG X J, WANG X. Infrared dual-band target detection method based on gradient and anisotropic diffusion[J]. Air & Space Defense, 2021, 4(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KTFY202104014.htm
    [13]
    LI Z M, MEI L F, SONG M. A survey on infrared weak small target detection method[J]. Advanced Materials Research, 2014, 945-949: 1558-1560.
    [14]
    施天俊, 鲍广震, 王福海, 等. 一种适用于多场景的红外弱小目标检测跟踪算法[J]. 航空兵器, 2019, 26(6): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201906007.htm

    SHI T J, BAO G Z, WANG F H, et al. An infrared small target detection and tracking algorithm applying for multiple scenarios[J]. Aero Weaponry, 2019, 26(6): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBQ201906007.htm
    [15]
    李静. 基于区域生长和背景配准的低信噪比红外目标检测算法[J]. 红外技术, 2014, 36(11): 909-913. http://hwjs.nvir.cn/article/id/hwjs201411011

    LI J. Detection method of moving infrared target integrating based on region growing and background[J]. Infrared Technology, 2014, 36(11): 909-913. http://hwjs.nvir.cn/article/id/hwjs201411011
  • Related Articles

    [1]Analysis of Atmospheric Transmission Impact on Mid-wave and Long-wave Infrared Radiation[J]. Infrared Technology , 2019, 41(4): 311-316.
    [2]YANG Dong, CAO Yaoxin, LI Jian, XUE Fenfen, SONG Minmin. The Study on Separation Characteristic of Airborne Infrared Decoy and Simulation[J]. Infrared Technology , 2018, 40(6): 585-589.
    [3]GAO Wen-guang, SUN Ji-yin, LIU Hao. The Simulation Models of Atmospheric Infrared Emissinon Based on Database[J]. Infrared Technology , 2010, 32(6): 333-336. DOI: 10.3969/j.issn.1001-8891.2010.06.006
    [4]MEI Fei, JIANG Yong, ZHANG Bai-ling, CHEN Shi-guo, CHEN Ge. Jet engine Infrared Signature Modeling and Simulation[J]. Infrared Technology , 2008, 30(11): 638-642. DOI: 10.3969/j.issn.1001-8891.2008.11.005
    [5]ZHOU Guo-hui, LIU Xiang-wei, XU ji-wei. A Math Model of Calculate the Atmospheric Transmittance Of Infrared Radiation[J]. Infrared Technology , 2008, 30(6): 331-334. DOI: 10.3969/j.issn.1001-8891.2008.06.006
    [6]LI Jin-ping, LIU Zi-qiang, YU ying, ZHANG Wei-wei. A Research on Atmospheric Radiation Correction Method Based on NOAAY Satellite Image Information[J]. Infrared Technology , 2008, 30(6): 316-320. DOI: 10.3969/j.issn.1001-8891.2008.06.002
    [7]YI Ya-xing, YAO Mei, WANG Guo-yu, CHEN Yong-guang. An Analysis of Atmospheric Influence to Detectability of Infrared Targets[J]. Infrared Technology , 2006, 28(2): 120-123. DOI: 10.3969/j.issn.1001-8891.2006.02.016
    [8]The Simple Method to Calculate the Atmosphere Transmittance of Infrared Radiation[J]. Infrared Technology , 2003, 25(5): 45-49,53. DOI: 10.3969/j.issn.1001-8891.2003.05.012
    [9]Transmission of Two Wave Bands Infrared Radiation Ratio of Aerial Object in the Atmosphere[J]. Infrared Technology , 2003, 25(1): 40-43. DOI: 10.3969/j.issn.1001-8891.2003.01.009
    [10]A Method of Calculating the Atmosphere Transmissibility[J]. Infrared Technology , 2002, 24(6): 51-53. DOI: 10.3969/j.issn.1001-8891.2002.06.012
  • Cited by

    Periodical cited type(4)

    1. 郭浩,杨建峰,马小龙,吕娟. 用于火星沙尘暴探测的广角多光谱成像光学系统设计. 光子学报. 2025(04): 63-77 .
    2. 刘一帆,周峰,胡斌,晋利兵. 基于Q型非球面的全景环带红外光学系统设计. 航天返回与遥感. 2024(01): 90-98 .
    3. 王彩霞,陈洪耀,司孝龙,李鑫,李佳伟,张黎明,包诗薇. 多波段鱼眼镜头相机实验室几何定标方法. 光子学报. 2024(08): 187-200 .
    4. 上官佳伟,李永亮,冯海龙,张馨元,王宁,李佳航. 大视场医用电子内窥镜光学成像系统研究综述. 激光杂志. 2024(08): 1-5 .

    Other cited types(3)

Catalog

    Article views PDF downloads Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return