Citation: | GAO Meiling, DUAN Jin, ZHAO Weiqiang, HU Qi. Near-infrared Image Colorization Method Based on a Dilated Global Attention Mechanism[J]. Infrared Technology , 2023, 45(10): 1096-1105. |
[1] |
戴康. 基于超像素提取和级联匹配的灰度图像自动彩色化[J]. 计算机与数字工程, 2019, 47(12): 3169-3172. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG201912044.htm
DAI K. Automatic colorization of grayscale images based on superpixel extraction and cascade matching[J]. Computer and Digital Engineering, 2019, 47(12): 3169-3172. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSG201912044.htm
|
[2] |
曹丽琴, 商永星, 刘婷婷, 等. 局部自适应的灰度图像彩色化[J]. 中国图象图形学报, 2019, 24(8): 1249-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201908004.htm
CAO L Q, SHANG Y X, LIU T T, et al. Locally adaptive grayscale image colorization[J]. Journal of Image and Graphics, 2019, 24(8): 1249-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201908004.htm
|
[3] |
Tomihisa Welsh, Michael Ashikhmin, Klaus Mueller. Transferring color to greyscale images[C]//ACM TOG, 2002, 21(3): 277-280.
|
[4] |
Reinhard E, Adhikhmin M, Gooch B, et al. Color transfer between images[J]. IEEE Computer Graphics and Applications, 2001, 21(5): 34-41.
|
[5] |
冯佳男, 江倩, 金鑫, 等. 基于深度神经网络的遥感图像彩色化方法[J]. 计算机辅助设计与图形学学报, 2021, 33(11): 1658-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202111003.htm
FENG J N, JIANG Q, JINX, et al. Colorization method of remote sensing image based on deep neural network[J]. Journal of Computer-Aided Design and Computer Graphics, 2021, 33(11): 1658-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF202111003.htm
|
[6] |
CHENG Z, YANG Q, SHENG B. Deep colorization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 415-423.
|
[7] |
Isola P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1125-1134.
|
[8] |
Deblina Bhattacharjee, Seungryong Kim, Guillaume Vizier, et al. DUNIT: detection based unsupervised image-to-image translation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 4787-4796.
|
[9] |
万园园, 王雨青, 张晓宁, 等. 结合全局语义优化的对抗性灰度图像彩色化[J]. 液晶与显示, 2021, 36(9): 1305-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS202109011.htm
WAN Y Y, WANG Y Q, ZHANG X N, et al. Adversarial grayscale image colorization combined with global semantic optimization[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(9): 1305-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS202109011.htm
|
[10] |
左岑, 杨秀杰, 张捷, 等. 基于轻量级金字塔密集残差网络的红外图像超分辨增强[J]. 红外技术, 2021, 43(3): 251-257. http://hwjs.nvir.cn/article/id/a1540103-27df-466a-a058-1fd126ff5aec
ZUO Q, YANG X J, ZHANG J, et al. Super-resolution enhancement of infrared images based on lightweight pyramidal dense residual networks[J]. Infrared Technology, 2021, 43(3): 251-257. http://hwjs.nvir.cn/article/id/a1540103-27df-466a-a058-1fd126ff5aec
|
[11] |
姜玉宁, 李劲华, 赵俊莉. 基于生成式对抗网络的图像超分辨率重建算法[J]. 计算机工程, 2021, 47(3): 249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202103032.htm
JIANG Y N, LI J H, ZHAO J L. Image super resolution reconstruction algorithm based on generative adversarial networks[J]. Computer Engineering, 2021, 47(3): 249-255. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202103032.htm
|
[12] |
张振江, 张宝金, 刘伟新, 等. 基于深度卷积网络的矿岩图像分割算法研究[J]. 采矿技术, 2021, 21(5): 149-152, 171. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK202105041.htm
ZHANG Z J, ZHANG B J, LIU W X, et al. Research on mining rock image segmentation algorithm based on deep convolutional network[J]. Mining Technology, 2021, 21(5): 149-152, 171. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCK202105041.htm
|
[13] |
姚永康. 基于对抗式迁移学习的皮肤病变图像分割方法研究[D]. 西安: 西京学院, 2021.
YAO Y K. Research on Skin Lesion Image Segmentation Method Based on Adversarial Transfer Learning[D]. Xi'an: Xijing University, 2021.
|
[14] |
吴杰, 段锦, 董锁芹, 等. DFM-GAN网络在跨年龄模拟的人脸识别技术研究[J]. 计算机工程与应用, 2021, 57(10): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202110015.htm
WU J, DUAN J, TONG S Q, et al. DFM-GAN networks in cross-age simulation for face recognition[J]. Computer Engineering and Applications, 2021, 57(10): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202110015.htm
|
[15] |
刘高天, 段锦, 范祺, 等. 基于改进RFBNet算法的遥感图像目标检测[J]. 吉林大学学报: 理学版, 2021, 59(5): 1188-1198. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202105026.htm
LIU G T, DUAN J, FAN Q, et al. Remote sensing image target detection based on improved RFBNet algorithm[J]. Journal of Jilin University(Science Edition), 2021, 59(5): 1188-1198. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDX202105026.htm
|
[16] |
LI C, WAN D M. Precomputed real-time texture synthesis with markovian generative adversarial networks[C]//2016 European Conference on Computer Vision of IEEE, 2016: 702-716.
|
[17] |
LI Y, CHEN Y, WANG N, et al. Scale aware trident networks for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 6053-6062.
|
[18] |
Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//2018 European Conference on Computer Vision, 2018: 3-19.
|
[19] |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//2015 Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015: 448-456.
|
[20] |
Bhaskara V S, Aumentado-Armstrong T, Jepson A D, et al. GraN-GAN: piecewise gradient normalization for generative adversarial networks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2022: 3821-3830.
|
[21] |
Brown M, Süsstrunk S. Multi-spectral sift for scene category recognition[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition, 2011: 177-184.
|
[22] |
Jason Antic. jantic/deoldify: a deep learning based project for colorizing and restoring old images (and video!)[J/OL] [2019-10-16]https://github.com/jantic/DeOldify.
|
[23] |
LIANG W, DING D, WEI G. An improved dual GAN for near infrared image colorization[J]. Infrared Physics & Technology, 2021, 116(4): 103764-103777.
|
[24] |
Perera P, Abavisani M, Patel V M. In2i: Unsupervised multi-image-to-image translation using generative adversarial networks[C]//2018 International Conference on Pattern Recognition, 2018: 140-146.
|
[1] | LIU Xiaopeng, ZHANG Tao. Global-Local Attention-Guided Reconstruction Network for Infrared Image[J]. Infrared Technology , 2024, 46(7): 791-801. |
[2] | LI Li, YI Shi, LIU Xi, CHENG Xinghao, WANG Cheng. Infrared Image Deblurring Based on Dense Residual Generation Adversarial Network[J]. Infrared Technology , 2024, 46(6): 663-671. |
[3] | CHEN Xin. Infrared and Visible Image Fusion Using Double Attention Generative Adversarial Networks[J]. Infrared Technology , 2023, 45(6): 639-648. |
[4] | WU Yuanyuan, WANG Zhishe, WANG Junyao, SHAO Wenyu, CHEN Yanlin. Infrared and Visible Image Fusion Using Attention- Based Generative Adversarial Networks[J]. Infrared Technology , 2022, 44(2): 170-178. |
[5] | HUANG Mengtao, GAO Na, LIU Bao. Image Deblurring Method Based on a Dual-Discriminator Weighted Generative Adversarial Network[J]. Infrared Technology , 2022, 44(1): 41-46. |
[6] | SONG Jingjing, LI Zhonghui, ZHANG Xin, TIAN He, ZHENG Anqi, ZANG Zesheng, ZHANG Quancong. Research on Normalized Histogram Characterization of Infrared Thermal Image of Rock Sample Damage[J]. Infrared Technology , 2021, 43(8): 777-783. |
[7] | LUO Di, WANG Congqing, ZHOU Yongjun. A Visible and Infrared Image Fusion Method based on Generative Adversarial Networks and Attention Mechanism[J]. Infrared Technology , 2021, 43(6): 566-574. |
[8] | XU Hangwei, ZHAO Zhuang, YUE Jiang, BAI Lianfa. Real-time Unsupervised Classification Method of Hyperspectral Images Based on the Normalized Spectral Vector[J]. Infrared Technology , 2018, 40(4): 362-368. |
[9] | GUO Jingbin, FENG Huajie, WANG Long, PENG Qinjian, LI Xingfei. Design of Focusing Window Based on Energy Function of Gradient[J]. Infrared Technology , 2016, 38(3): 197-202. |
[10] | LIU Gang, HAN Jian-dong. A New 2*Image Interpolation Based on Gradient[J]. Infrared Technology , 2006, 28(6): 324-326. DOI: 10.3969/j.issn.1001-8891.2006.06.004 |