ZHANG Lian, LI Mengtian, YU Songlin, GONG Yu, YANG Hongjie. An Infrared Image Segmentation Method Based on Improved Lazy Snapping Algorithm[J]. Infrared Technology , 2021, 43(4): 372-377.
Citation: ZHANG Lian, LI Mengtian, YU Songlin, GONG Yu, YANG Hongjie. An Infrared Image Segmentation Method Based on Improved Lazy Snapping Algorithm[J]. Infrared Technology , 2021, 43(4): 372-377.

An Infrared Image Segmentation Method Based on Improved Lazy Snapping Algorithm

More Information
  • Received Date: July 07, 2020
  • Revised Date: July 14, 2020
  • Considering that infrared images contain a considerable amount of noise and are of low contrast, an improved lazy snapping(LS) segmentation method combined with fast fuzzy C-means clustering is proposed. Infrared images are pre-segmented using a fast fuzzy C-means clustering algorithm, and the target and background seed points are marked in the image by the morphological skeleton extraction method. The LS algorithm is converted from global segmentation to cluster region segmentation, and an energy function is constructed. The minimum value of the energy function is solved by the minimum cut algorithm, and the segmentation efficiency is improved. The phenomenon of over-segmentation in the image is reduced, the LS algorithm is changed from an interactive algorithm to a non-interactive algorithm. Thus, the automatic segmentation of infrared images is realized, improving the real-time nature of the LS algorithm. By performing segmentation experiments on various infrared images and then comparing the proposed method's performance with that of other segmentation methods, the results show that the improved algorithm has a good segmentation effect and strong robustness.
  • [1]
    Rafael C. MATLAB Implementation of Digital Image Processing[M]. Beijing: Tsinghua University Press, 2013.
    [2]
    张锦文. 变电站电气设备红外图像分割方法研究[D]. 北京: 华北电力大学, 2018.

    ZHANG Jinwen. Research on Infrared Image Segmentation Method of Electrical Equipment in Substation[D]. Beijing: North China Electric Power University, 2018.
    [3]
    徐鹏飞, 张菁, 尹腾飞, 等. 基于改进PCNN算法的电力设备图像分割研究[J]. 智能计算机与应用, 2019, 9(3): 59-62, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ201903012.htm

    XU Pengfei, ZHANG Jing, YIN Tengfei, et al. Research on image segmentation of power equipment based on improved PCNN algorithm[J]. Intelligent Computers and Applications, 2019, 9(3): 59-62, 68. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXZ201903012.htm
    [4]
    王智杰, 牛硕丰, 刘相兴, 等. 蝙蝠算法优化二维熵的变电设备红外图像分割应用研究[J]. 电子设计工程, 2018, 26(18): 83-87. DOI: 10.3969/j.issn.1674-6236.2018.18.018

    WANG Zhijie, NIU Shuofeng, LIU Xiangxing, et al. Application research on infrared image segmentation of substation equipment based on bat algorithm to optimize two-dimensional entropy[J]. Electronic Design Engineering, 2018, 26(18): 83-87. DOI: 10.3969/j.issn.1674-6236.2018.18.018
    [5]
    李鑫, 崔昊杨, 霍思佳, 等. 基于粒子群优化法的Niblack电力设备红外图像分割[J]. 红外技术, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010

    LI Xin, CUI Haoyang, HUO Sijia, et al. Niblack power equipment infrared image segmentation based on particle swarm optimization method[J]. Infrared Technology, 2018, 40(8): 780-785. http://hwjs.nvir.cn/article/id/hwjs201808010
    [6]
    樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报: 工学版, 2016, 46(1): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201601005.htm

    FAN Shuyan, DING Shifei. Improved graph cut algorithm based on multi-scale[J]. Journal of Shandong University: Engineering Edition, 2016, 46(1): 28-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SDGY201601005.htm
    [7]
    Boykov Y, Funka L G. Graph cut and efficient N-D image segmentation[J]. International Journal of Computer Vision, 2006, 70(2): 109-131. DOI: 10.1007/s11263-006-7934-5
    [8]
    郑加明, 陈昭炯. 局部颜色模型的交互式Graph-Cut分割算法[J]. 智能系统学报, 2011, 6(4): 318-323. DOI: 10.3969/j.issn.1673-4785.2011.04.006

    ZHENG Jiaming, CHEN Zhaojiong. Interactive graph-cut segmentation algorithm of local color model[J]. Journal of Intelligent Systems, 2011, 6(4): 318-323. DOI: 10.3969/j.issn.1673-4785.2011.04.006
    [9]
    刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展[J]. 自动化学报, 2012, 38(6): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201206003.htm

    LIU Songtao, YIN Fuliang. Image segmentation method based on graph cut and its new development[J]. Acta Automatica Sinica, 2012, 38(6): 911-922. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201206003.htm
    [10]
    Kohli P, Torr P. Dynamic graph cuts for efficient inference in markov random fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12): 2079-2008. DOI: 10.1109/TPAMI.2007.1128
    [11]
    周兵, 韩媛媛, 徐明亮, 等. 快速非局部均值图像去噪算法[J]. 计算机辅助设计与图形学学报, 2016, 28(8): 1260-1268. DOI: 10.3969/j.issn.1003-9775.2016.08.007

    ZHOU Bing, HAN Yuanyuan, XU Mingliang, et al. Fast non-local mean image denoising algorithm[J]. Journal of Computer Aided Design and Graphics, 2016, 28(8): 1260-1268. DOI: 10.3969/j.issn.1003-9775.2016.08.007
    [12]
    LAN Rong, FAN Jiulun, LIU Ying, et al. Image thresholding by maximizing the similarity degree based on intuitionistic fuzzy sets[C]//Quantitative Logic and Soft Computing, Hangzhou, 2016: 631-640.
    [13]
    KAPIL S, CHAWLA M, ANSARI M D. On K-means data clustering algorithm with genetic algorithm[C]//Fourth International Conference on Parallel, Distributed and Grid Computing, 2016: 202-206.
    [14]
    LI Yin, SUN Jian, TANG Chi-Keung, et al. Lazy snapping[J]. ACM Transactions on Graphics (TOG), 2004, 23(3): 303-308. DOI: 10.1145/1015706.1015719
    [15]
    BAI X, CHEN Z, ZHANG Y, et al. Infrared ship target segmentation based on spatial information improved FCM[J]. IEEE Transactions on Cybernetics, 2016, 46(12): 3259-3271. DOI: 10.1109/TCYB.2015.2501848
    [16]
    LIN K, HUNG K, LIN C. Rule generation based on novel kernel intuitionistic fuzzy rough set model[J]. IEEE Access, 2018(6): 11953-11958. http://ieeexplore.ieee.org/document/8302495
    [17]
    KAUSHAL M, SOLANKI R, LOHANI Q M D, et al. A novel intuitionistic fuzzy set generator with application to clustering[C]//2018IEEE International Conference on Fuzzy Systems, Piscataway, 2018: 1-8.
    [18]
    ZHAO F. FCM clustering with non local-spatial information for noisy image segmentation[J]. Frontiers of Computer Science in China, 2011, 5(1): 45-56. DOI: 10.1007/s11704-010-0393-8
    [19]
    CHEN S C, ZHANG D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics, 2004, 34(4): 1907-1916. DOI: 10.1109/TSMCB.2004.831165
    [20]
    李云松, 冯玉东, 张国锋. 基于快速模糊C均值聚类的图像粗集分割[J]. 兰州理工大学学报, 2013, 39(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201301022.htm

    LI Yunsong, FENG Yudong, ZHANG Guofeng. Image rough set segmentation based on fast fuzzy C-means clustering[J]. Journal of Lanzhou University of Technology, 2013, 39(1): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201301022.htm
  • Related Articles

    [1]WU Xiaojun, YU Xianzhe, WANG Peng, ZHAO He, LI Tiancheng. Superpixel-Based Improved Fuzzy C-Means Clustering for Electrical Equipment Infrared Image Segmentation[J]. Infrared Technology , 2025, 47(2): 235-242.
    [2]LIU Peijin, ZHANG Xiangrui, WEI Ping. EnFCM Clustering Segmentation Method for Infrared Image of Electrical Equipments Based on Fusion Reconstruction[J]. Infrared Technology , 2024, 46(3): 295-304.
    [3]GONG Jiamin, WU Yijie, LIU Fang, ZHANG Yunsheng, LEI Shutao, ZHU Zehao. Image Fusion Algorithm Based on Improved Fuzzy C-means Clustering[J]. Infrared Technology , 2023, 45(8): 849-857.
    [4]WANG Jie, WU Hong, ZHAN Zhongqiang, LI Jinliang, JIN Ming, CHEN Wentao. Simulation of Infrared 3D Image Reconstruction of High Voltage Switchgear Temperature Field Based on Lazy Snapping Hybrid Simulated Annealing Algorithm[J]. Infrared Technology , 2023, 45(3): 276-281.
    [5]WANG Luxiang, ZHANG Zhijie, WANG Quan, CHEN Haoze. Infrared Image Defect Detection Based on the Algorithm of Intuitionistic Fuzzy C-Means Clustering[J]. Infrared Technology , 2022, 44(11): 1220-1227.
    [6]ZHANG Shuo, BAI Tingzhu, QIU Chun, SHAO Long, ZHANG Yu. Method of Spectral Clustering Gray Texture Image Segmentation and Its Application in Near-infrared Imaging Simulation[J]. Infrared Technology , 2018, 40(4): 369-376.
    [7]A FCM Segmentation Method of Measurement of Image Based on Adaptive Coefficient of Fuzzy Weight[J]. Infrared Technology , 2013, (3): 146-149.
    [8]WANG Xiao-chen, FU Dong-mei, LI Xiao-gang, LIU Yan. Complex Infrared Objects Segmentation Based on Mean-shift Filtering and Ant Colony Clustering[J]. Infrared Technology , 2009, 31(9): 545-548. DOI: 10.3969/j.issn.1001-8891.2009.09.012
    [9]An Improved Infrared Image Segmentation Algorithm Using Fuzzy Kernel Clustering[J]. Infrared Technology , 2008, 30(12): 717-721. DOI: 10.3969/j.issn.1001-8891.2008.12.009
    [10]ZHENG Yi, LIU Shang-qian. Image Segmentation Based on Fuzzy Exponential Entropy and Simulated Annealing Algorithm[J]. Infrared Technology , 2006, 28(7): 395-399. DOI: 10.3969/j.issn.1001-8891.2006.07.006
  • Cited by

    Periodical cited type(2)

    1. 黄坤琳,吴国周,徐维新,李利东,王海梅,李航,李自翔,司荆柯,刘洪宾,吴成娜. 呼伦贝尔东部农田区动态融雪过程及其影响因子. 干旱区研究. 2024(09): 1514-1526 .
    2. 黄林,李晖,康璇. 基于Freeman全极化分解的干雪识别指数模型构建. 厦门理工学院学报. 2023(05): 40-48 .

    Other cited types(2)

Catalog

    Article views (333) PDF downloads (44) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return