YI Shi, ZHOU Siyao, SHEN Lian, ZHU Jinming. Vehicle-based Thermal Imaging Target Detection Method Based on Enhanced Lightweight Network[J]. Infrared Technology , 2021, 43(3): 237-245.
Citation: YI Shi, ZHOU Siyao, SHEN Lian, ZHU Jinming. Vehicle-based Thermal Imaging Target Detection Method Based on Enhanced Lightweight Network[J]. Infrared Technology , 2021, 43(3): 237-245.

Vehicle-based Thermal Imaging Target Detection Method Based on Enhanced Lightweight Network

More Information
  • Received Date: September 10, 2018
  • Revised Date: December 20, 2018
  • A vehicle-based thermal imaging system does not depend on a light source, is insensitive to weather, and has a long detection distance. Automatic target detection using vehicle-based thermal imaging is of great significance for intelligent night driving. Compared with visible images, the infrared images acquired by a vehicle-based thermal imaging system based on existing algorithms have low resolution, and the details of small long-range targets are blurred. Moreover, the real-time algorithm performance required to address the vehicle speed and computing ability of the vehicle-embedded platform should be considered in the vehicle-based thermal imaging target detection method. To solve these problems, an enhanced lightweight infrared target detection network (I-YOLO) for a vehicle-based thermal imaging system is proposed in this study. The network uses a tiny you only look once(Tiny-YOLOV3) infrastructure to extract shallow convolution-layer features according to the characteristics of infrared images to improve the detection of small infrared targets. A single-channel convolutional core was used to reduce the amount of computation. A detection method based on a CenterNet structure is used to reduce the false detection rate and improve the detection speed. The actual test shows that the average detection rate of the I-YOLO target detection network in vehicle-based thermal imaging target detection reached 91%, while the average detection speed was81 fps, and the weight of the training model was96MB, which is suitable for deployment on a vehicle-based embedded system.
  • [1]
    崔美玉. 论红外热像仪的应用领域及技术特点[J]. 中国安防, 2014(12): 90-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAF201412044.htm

    CUI Meiyu. On the Application Field and Technical Characteristics of Infrared Thermal Imager[J]. China Security, 2014(12): 90-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGAF201412044.htm
    [2]
    范延军. 基于机器视觉的先进辅助驾驶系统关键技术研究[D]. 南京: 东南大学, 2016.

    FAN Yanjun. Research on Key Technologies of Advanced Auxiliary Driving System Based on Machine Vision[D]. Nanjing: Southeast University, 2016.
    [3]
    杨阳, 杨静宇. 基于显著性分割的红外行人检测[J]. 南京理工大学学报: 自然科学版, 2013, 37(2): 251-256. DOI: 10.3969/j.issn.1005-9830.2013.02.009

    YANG Yang, YANG Jingyu. Infrared Pedestrian Detection Based on Significance Segmentation[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2013, 37(2): 251-256. DOI: 10.3969/j.issn.1005-9830.2013.02.009
    [4]
    LE Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278- 2324. DOI: 10.1109/5.726791
    [5]
    Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference onComputer Vision and Pattern Recognition, 2014: 580-587.
    [6]
    HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824
    [7]
    Girshick R. Fast R-CNN[C]//IEEEInternational Conference on Computer Vision, 2015: 1440-1448.
    [8]
    REN S Q, HE K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031
    [9]
    LI Y, HE K, SUN J. R-FCN: Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems, 2016: 379-387.
    [10]
    LIU W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016: 21-37.
    [11]
    Redmon J, Farhadi A. YOLO9000: Better, faster, stronger[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6517- 6525.
    [12]
    Redmon J, Farhadi A. Yolov3: An incremental improvement[EB/OL]. (2018-04-08)[2018-09-07]. https://arxiv.org/abs/1804.02767
    [13]
    ZHANG Y, SHEN Y L, ZHANG J. An improved Tiny-YOLOv3 pedestrian detection algorithm[J]. Optik, 2019(183): 17–23. http://ieeexplore.ieee.org/document/8868839
    [14]
    DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: Keypoint triplets for object detection[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision. NJ: IEEE, 2019: 6569-6578.
    [15]
    吴天舒, 张志佳, 刘云鹏, 等. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程, 2018, 47(7): 703005-0703005(7). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807007.htm

    WU Tianshu, ZHANG Zhijia, LIU Yunpeng, et al. A lightweight small object detection algorithm based on improved SSD[J]. Infrared and Laser Engineering, 2018, 47(7): 703005-0703011. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201807007.htm
    [16]
    唐聪, 凌永顺, 郑科栋, 等. 基于深度学习的多视窗SSD目标检测方法[J]. 红外与激光工程, 2018, 47(1): 126003-126011. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201801042.htm

    TANG Cong, LING Yongshun, ZHENG Kedong, et al. Object detection method of multi-view SSD based on deep learning[J]. Infrared and Laser Engineering, 2018, 47(1): 126003-0126011. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201801042.htm
    [17]
    张祥越, 丁庆海, 罗海波, 等. 基于改进LCM的红外小目标检测算法[J]. 红外与激光工程, 2017, 46(7): 726002-0726008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201707040.htm

    ZHANG Xiangyue, DING Qinghai, LUO Haibo, et al. Infrared dim target detection algorithm based on improved LCM[J]. Infrared and Laser Engineering, 2017, 46(7): 726002-0726008. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201707040.htm
    [18]
    张小荣, 胡炳梁, 潘志斌, 等. 基于张量表示的高光谱图像目标检测算法[J]. 光学精密工程, 2019, 27(2): 488-498. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201902025.htm

    ZHANG Xiaorong, HU Bingliang, PAN Zhibin, et al. Tensor Representation Based Target Detection for Hyperspectral Imagery[J]. Editorial Office of Optics and Precision Engineering, 2019, 27(2): 488-498. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201902025.htm
    [19]
    王洪庆, 许廷发, 孙兴龙, 等. 目标运动轨迹匹配式的红外-可见光视频自动配准[J]. 光学精密工程, 2018, 26(6): 1533-1541. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201806028.htm

    WANG Hongqing, XU Tingfa, SUN Xinglong, et al. Infrared-visible video registration with matching motion trajectories of targets[J]. Editorial Office of Optics and Precision Engineering, 2018, 26(6): 1533-1541. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201806028.htm
  • Cited by

    Periodical cited type(11)

    1. 冯青文,王丹辉,张德贤. LSTM-SVM算法下软件潜在溢出漏洞检测仿真. 计算机仿真. 2024(02): 487-491 .
    2. 姚迎乐,冯乃勤. 广义神经网络在数据流量预测中的应用仿真. 计算机仿真. 2024(04): 382-386 .
    3. 赵莎莎,袁葆,安亚刚,朱雅魁,苏欣. 智能电网需求侧用户参与度研究模型. 电网与清洁能源. 2024(03): 60-66 .
    4. 郑奕捷,李翠玉,郑祖芳. RNN循环神经网络的服务机器人交互手势辨识. 机械设计与制造. 2024(04): 282-285 .
    5. 聂萌瑶,刘鑫. 正则化极限学习下细粒度网络入侵检测仿真. 计算机仿真. 2024(05): 419-423 .
    6. 涂剑峰,李芳丽. 冒充性攻击下无线传感节点信息数据安全推荐算法. 传感技术学报. 2024(08): 1434-1440 .
    7. 周德,张霖,何小宇,唐伟晔. 基于光谱的天然气组分定量分析方法研究. 自动化与仪表. 2023(06): 115-119 .
    8. 翁渊瀚,李南. 基于时间序列模型的文本数据压缩存储算法. 吉林大学学报(工学版). 2023(07): 2109-2114 .
    9. 王尚文. 基于深度学习的高压输电线双极短路故障检测. 自动化与仪表. 2023(08): 69-73+93 .
    10. 盛丽华,沈晖. 多源异构数据边缘融合信息化监测仿真. 计算机仿真. 2023(09): 477-481 .
    11. 薛峪峰,马晓琴,罗红郊,田光欣. 海量冗余数据冲击下网络入侵检测方法. 电子设计工程. 2023(22): 167-170+175 .

    Other cited types(5)

Catalog

    Article views (743) PDF downloads (84) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return