Citation: | CAO Min, WANG Yao. Typical Infrared Object Segmentation Based on Sparse Shape Prior and Variational Regularization[J]. Infrared Technology , 2025, 47(5): 611-618. |
The infrared images captured by the uncooled detector often exhibit interference issues, such as blurred edge details and uneven grayscale distribution, which can significantly impact the accuracy of object segmentation. To address this, we propose an enhanced implicit shape representation framework based on a sparse representation model. This framework guides the evolution of implicit shapes using sparse linear combinations of probabilistic shapes drawn from a predefined dictionary. First, representative shape components are selected from the dictionary to form sparse combinations that effectively model the target shape. The object contour prior is implicitly incorporated into the sparse representation, facilitating more accurate contour alignment. A new energy function is then constructed, integrating region-based segmentation with sparse representation. The optimal level-set function is obtained through iterative optimization, ultimately yielding precise object segmentation results. Experimental evaluations demonstrate that the proposed model delivers robust segmentation performance, especially for typical objects in complex backgrounds.
[1] |
杨芳. 轻型反坦克导弹复合制导模式设计与仿真分析[J]. 火力与指挥控制, 2020, 45(6): 165-169.
YANG Fang. Design and simulation analysis of composite guidance mode for light anti-tank missile[J]. Fire Control & Command Control, 2020, 45(6): 165-169.
|
[2] |
盛大俊, 张强. 基于边缘感知的深度神经网络红外装甲目标检测[J]. 红外技术, 2021, 43(8): 784-791. http://hwjs.nvir.cn/article/id/b0a510ee-2d3c-46ca-9ca6-995c4c596e1c
SHENG Dajun, ZHANG Qiang. Infrared armored target detection based on edge-perception in deep neural network[J]. Infrared Technology, 2021, 43(8): 784-791 http://hwjs.nvir.cn/article/id/b0a510ee-2d3c-46ca-9ca6-995c4c596e1c
|
[3] |
刘箴, 吴馨远, 陈士超, 等. 典型红外精确制导武器发展分析[J]. 弹箭与制导学报, 2012, 42(1): 19-27.
LIU Zhen, WU Xinyuan, CHEN Shichao, et al. Analysis of the development of typical infrared precision guided weapons[J]. Journal of Missile and Guidance, 2012, 42(1): 19-27
|
[4] |
CHEN Yadang, HAO Chuanyan, YANG Zhixin, et al. Fast target-aware learning for few-shot video object segmentation[J]. Science China: Information Sciences, 2022, 65(8): 71-86.
|
[5] |
SHENG Z. Research of SVM-Based infrared small object segmentation and clustering method[J]. Signal Processing, 2005, 12(3): 387-392.
|
[6] |
SONG I, KIM S. AVILNet: a new pliable network with a novel metric for small-object segmentation and detection in infrared images[J]. IEEE Transactions on Image Processing, 2020, 48(12): 127-136.
|
[7] |
李唐兵, 胡锦泓, 周求宽. 基于改进斑点鬣狗优化算法的红外图像分割[J]. 红外技术, 2021, 43(10): 994-1002. http://hwjs.nvir.cn/article/id/bd8352ac-bd60-4706-a6c3-8410617dae1f
LI Tangbing, HU Jinhong, ZHOU Qiukuan. Infrared image segmentation based on improved spotted hyena optimizer[J]. Infrared Technology, 2021, 43(10): 994-1002. http://hwjs.nvir.cn/article/id/bd8352ac-bd60-4706-a6c3-8410617dae1f
|
[8] |
韩红伟, 冯向东. 变分水平集方法在灰度不均图像分割中的应用[J]. 计算机工程与应用, 2017, 53(14): 203-208.
HAN Hongwei, FENG Xiangdong. Application of variational level set method to image segmentation with intensity inhomogeneity[J]. Computer Engineering and Applications, 2017, 53(14): 203-208.
|
[9] |
刘忠林, 吴一全, 邹宇. 多尺度红外超像素图像模型的小目标检测[J]. 中国图象图形学报, 2019, 24(12): 2159-2173.
LIU Zhonglin, WU Yiquan, ZOU Yu. Multiscale infrared superpixel-image model for small-target detection[J]. Journal of Image and Graphics, 2019, 24(12): 2159-2173.
|
[10] |
ZHANG S, ZHAN Y, DEWAN M, et al. Towards robust and effective shape modeling: Sparse shape composition[J]. Medical Image Analysis, 2012, 16(1): 265-277.
|
[11] |
ZHANG S, ZHAN Y, DEWAN M, et al. Sparse shape composition: A new framework for shape prior modeling[C]//CVPR, 2011: 1025-1032.
|
[12] |
Ibragimov B, Likar B, Pernuš F, et al. Shape representation for efficient landmark-based segmentation in 3-D[J]. IEEE Transactions on Medical imaging, 2014, 33(4) : 861-874.
|
[13] |
Javanmardi M, Sajjadi M, LIU T, et al. Unsupervised total variation loss for semi-supervised deep learning of semantic segmentation[J]. arXiv preprint arXiv: 1605.01368, 2016.
|
[14] |
Bredies K, Holler M. Higher-order total variation approaches and generalisations[J]. Inverse Problems, 2020, 36(12): 123001.
|
[15] |
Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
|
[16] |
Kalogerakis E, Chaudhuri S, Koller D, et al. A probabilistic model for component-based shape synthesis[J]. ACM Transactions on Graphics (TOG), 2012, 31(4): 1-11.
|
[17] |
Aslan M S, Shalaby A, Abdelmunim H, et al. Probabilistic shape‐based segmentation method using level sets[J]. IET Computer Vision, 2014, 8(3): 182-194.
|
[18] |
Adams J, Bhalodia R, Elhabian S. Uncertain-deepssm: From images to probabilistic shape models[C]//International Workshop on Shape in Medical Imaging, 2020: 57-72.
|
[19] |
ZHANG S, ZHAN Y, Metaxas D N. Deformable segmentation via sparse representation and dictionary learning[J]. Medical Image Analysis, 2012, 16(7): 1385-1396.
|
[20] |
Scetbon M, Elad M, Milanfar P. Deep KSVD denoising[J]. IEEE Transactions on Image Processing, 2021, 30: 5944-5955.
|
[21] |
Kaick O V, Fish N, Kleiman Y, et al. Shape segmentation by approximate convexity analysis[J]. ACM Transactions on Graphics (TOG), 2014, 34(1): 1-11.
|
[22] |
VU N, Manjunath B S. Shape prior segmentation of multiple objects with graph cuts[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2008: 1-8.
|
[23] |
HE Z, HE Y, CAO W. Deformable image registration with attention-guided fusion of multi-scale deformation fields[J]. Applied Intelligence, 2022, 24(12): 1-15.
|