XUN Huasheng, ZHANG Jingjing, LIU Xiao, LI Teng, NIAN Fudong, ZHANG Xin. Multi-Target Detection of Low-Illuminance Scene Based on Polarization Image[J]. Infrared Technology , 2022, 44(5): 483-491.
Citation: XUN Huasheng, ZHANG Jingjing, LIU Xiao, LI Teng, NIAN Fudong, ZHANG Xin. Multi-Target Detection of Low-Illuminance Scene Based on Polarization Image[J]. Infrared Technology , 2022, 44(5): 483-491.

Multi-Target Detection of Low-Illuminance Scene Based on Polarization Image

More Information
  • Received Date: June 14, 2021
  • Revised Date: August 02, 2021
  • Polarized light reflection information can directly invert the intrinsic characteristics of a target and has strong anti-interference characteristics in the transmission process. Thus, polarization imaging technology can be applied to the fields of intelligent monitoring and traffic monitoring in various complex environments. In recent years, deep-neural-network methods for interpreting image detection targets have been developed rapidly and widely used in various fields of image processing. In this study, a vehicle multi-target detection algorithm based on polarized images and deep learning is proposed. First, the target polarization degree image can be obtained by acquiring the polarization image in real time and analyzing the polarization information. Second, to enhance the high contrast between the detection targets and the background in the polarization image, channel attention and spatial attention are introduced into the backbone network to improve the ability of the network features to perform adaptive learning. In addition, the K-means algorithm is used to perform clustering analysis on the target location information, thereby increasing the network's learning speed in the polarization image and improving the progress of target detection. The experimental results show that this method is effective and fast for vehicle detection in complex scenes with low illumination. This method combines the advantages of polarization imaging and deep-learning target detection and has substantial application scope in road vehicle target detection, recognition, and tracking.
  • [1]
    于洵, 杨烨, 姜旭, 等. 基于偏振光谱成像的目标识别方法研究[J]. 应用光学, 2016, 37(4): 537-541. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201604008.htm

    YU Xun, YANG Ye, JIANG Xu, et al. Recognition of camouflage targets by polarization spectral imaging system[J]. Journal of Applied Optics, 2016, 37(4): 537-541. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX201604008.htm
    [2]
    李从利, 薛松, 陆文骏, 等. 雾天条件下偏振解析成像质量评价[J]. 中国图象图形学报, 2017, 22(3): 366-375. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201703011.htm

    LI Congli, XUE Song, LU Wenjun, et al. Quality assessment of polarization imaging under foggy[J]. Journal of Image and Graphics, 2017, 22(3): 366-375. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTB201703011.htm
    [3]
    李小明, 黄勤超. 沙漠背景下红外偏振图像目标检测方法[J]. 红外技术, 2016, 38(9): 779-782, 792. http://hwjs.nvir.cn/article/id/hwjs201609012

    LI Xiaoming, HUANG Qinchao. Target detection for infrared polarization image in the background of desert[J]. Infrared Technology, 2016, 38(9): 779-782, 792. http://hwjs.nvir.cn/article/id/hwjs201609012
    [4]
    张荣, 李伟平, 莫同. 深度学习研究综述[J]. 信息与控制, 2018, 47(4): 385-397. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYK201804002.htm

    ZHANG Rong, LI Weiping, MO Tong. Review of deep learning[J]. Information and Control, 2018, 47(4): 385-397. https://www.cnki.com.cn/Article/CJFDTOTAL-XXYK201804002.htm
    [5]
    王文秀, 傅雨田, 董峰, 等. 基于深度卷积神经网络的红外船只目标检测方法[J]. 光学学报, 2018, 38(7): 0712006. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201807020.htm

    WANG Wenxiu, FU Yutian, DONG Feng, et al. Infrared ship target detection method based on deep convolution neural network[J]. Acta Optica Sinica, 2018, 38(7): 0712006. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201807020.htm
    [6]
    罗海波, 许凌云, 惠斌, 等. 基于深度学习的目标跟踪方法研究现状与展望[J]. 红外与激光工程, 2017, 46(5): 0502002-0502002(7). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201705002.htm

    LUO Haibo, XU Lingyun, HUI Bin, et al. Status and prospect of target tracking based on deep learning[J]. Infrared and Laser Engineering, 2017, 46(5): 0502002-0502002(7). https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201705002.htm
    [7]
    Ross Girshick. Fast R-CNN[J]. Computer Science, 2015, 6: 1440-1448.
    [8]
    REN Shaoqing, HE Kaiming, Ross Girshick, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149.
    [9]
    HE Kaiming, Georgia Gkioxari, Piotr Dollar, et al. Mask R-CNN[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision, 2017: 2961-2969.
    [10]
    LIU Wei, Dragomir Anguelov, Dumitru Erhan, et al. SSD: Single shot multibox detector[C]//European Conference on Computer Vision, 2016, 6: 21-27.
    [11]
    Joseph Redmon, Santosh Divvala, Ross Girshick, et al. You Only Look Once: unified, real-time object detection[C]//Conference on Computer Vision and Pattern Recognition, 2016, 6: 779-788.
    [12]
    Joseph Redmon, Ali Farhadi. YOLO9000: better, faster, stronger[C]// Conference on Computer Vision and Pattern Recognition, 2017, 7: 6517-6525
    [13]
    Joseph Redmon, Ali Farhadi. YOLOv3: an incremental improvement [J/OL]. arXiv: 1804.02767, 2018.
    [14]
    Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao. YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv: 2004. 10934, 2020.
    [15]
    冈萨雷斯. 数字图像处理[M]. 第三版, 北京: 电子工业出版社, 2011: 26-29.

    Rafael C. Gonzalez. Digital Image Processing[M]. 3th, Beijing: Publishing House of Electronics Industry, 2011: 26-29.
    [16]
    Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 3-19.
    [17]
    张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测[J]. 光电工程, 2020, 47(10): 200314. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010010.htm

    ZHANG R Z, ZHANG J L, QI X P, et al. Infrared target detection and recognition in complex scene[J]. Opto-Electron Eng., 2020, 47(10): 200314. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC202010010.htm
    [18]
    宫剑, 吕俊伟, 刘亮, 等. 红外偏振图像的舰船目标检测[J]. 光谱学与光谱分析, 2020, 40(2): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202002052.htm

    GONG Jian, LYU Junwei, LIU Liang, et al. Ship target detection based on infrared polarization image[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202002052.htm
    [19]
    游江, 刘鹏祖, 容晓龙, 等. 基于暗通道先验原理的偏振图像去雾增强算法研究[J]. 激光与红外, 2020, 50(4): 493-500. DOI: 10.3969/j.issn.1001-5078.2020.04.019

    YOU Jiang, LIU Pengzu, RONG Xiaolong, et al. Dehazing and enhancement research of polarized image based on dark channel priori principle[J]. Laser & Infrared, 2020, 50(4): 493-500. DOI: 10.3969/j.issn.1001-5078.2020.04.019
    [20]
    王美荣, 徐国明, 袁宏武. 显著性偏振参量深度稀疏特征学习的目标检测方法[J]. 激光与光电子学进展, 2019, 56(19): 191101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201919013.htm

    WANG Meirong, XU Guoming, YUAN Hongwu. Object detection by deep sparse feature learning of salient polarization parameters[J]. Laser & Optoelectronics Progress, 2019, 56(19): 191101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201919013.htm
    [21]
    李慕锴, 张涛, 崔文楠. 基于YOLOv3的红外行人小目标检测技术研究[J]. 红外技术, 2020, 42(2): 176-181. http://hwjs.nvir.cn/article/id/hwjs202002012

    LI Mukai, ZHANG Tao, CUI Wennan. Research of infrared small pedestrian target detection based on YOLOv3[J]. Infrared Technology, 2020, 42(2): 176-181. http://hwjs.nvir.cn/article/id/hwjs202002012
  • Related Articles

    [1]LIN Li, JIANG Jing, ZHU Junzhen, FENG Fuzhou. Detection and Recognition of Metal Fatigue Cracks by Bi-LSTM Based on Eddy Current Pulsed Thermography[J]. Infrared Technology , 2023, 45(9): 982-989.
    [2]DUAN Lixiang, LIU Ziwang, ZHAO Zhenxin, KONG Xin, YUAN Zhuang. Infrared Image ROI Extraction Based on Region Contrast and Random Forest[J]. Infrared Technology , 2020, 42(10): 988-993.
    [3]WU Yiyuan, LEI Zhenggang, ZHANG Peizhong, YU Chunchao. Construction and Verification of Vibration Test Platform Based on Virtual Instrument Architecture[J]. Infrared Technology , 2019, 41(5): 435-442.
    [4]SUN Jiwei, FENG Fuzhou, ZHANG Lixia, MIN Qingxu. Thermal Analysis of Metal Fatigue Cracks in Eddy Current Pulsed Thermography[J]. Infrared Technology , 2019, 41(4): 383-387.
    [5]MIN Qingxu, FENG Fuzhou, XU Chao, SUN Jiwei. Detection of Fatigue Cracks in Metal Plates using Lock-in Vibrothermography[J]. Infrared Technology , 2018, 40(1): 91-94.
    [6]ZHANG Chao, ZHAO Qiang, TANG Han, ZHANG Weifeng, TAO Liang, ZHAO Jinsong. Design and Analysis of SiC Mirror for Vibration and Scanning[J]. Infrared Technology , 2017, 39(4): 309-316.
    [7]ZHANG Hongwei, XU Yulei, TAN Songnian, LI Quanchao. Design of Vibration Damping System for Infrared Camera with Long Focal Length[J]. Infrared Technology , 2016, 38(8): 643-647.
    [8]SHEN Zhen-yi, SUN Shao-yuan, HOU Jun-jie, ZHAO Hai-tao. The Vehicle Infrared Image Colorization Algorithm Based on Random Forest and Superpixel Segmentation[J]. Infrared Technology , 2015, (12): 1041-1046.
    [9]XIA Li-kun, ZI Zheng-hua, YAN Ming, TAO Liang, MO Qi-yuan, WANG Zheng-qiang, LI Chang-cheng. Discussion of Domestic Testing Methods for Parallelism of Optical Axis and Datum Clamp Plane for IR Imager[J]. Infrared Technology , 2015, (6): 523-527.
    [10]YUAN Ming-song, FENG Jian-wei, HUANG Yun, GU Dao-qin, PAN Shun-chen. Random Vibration Response Analysis of Loitering Attack Missile Imaging Infrared Seeker[J]. Infrared Technology , 2015, (4): 342-346.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return