YOU Dazhang, TAO Jiatao, ZHANG Yepeng, ZHANG Min. Low-light Image Enhancement Based on Gray Scale Transformation and Improved Retinex[J]. Infrared Technology , 2023, 45(2): 161-170.
Citation: YOU Dazhang, TAO Jiatao, ZHANG Yepeng, ZHANG Min. Low-light Image Enhancement Based on Gray Scale Transformation and Improved Retinex[J]. Infrared Technology , 2023, 45(2): 161-170.

Low-light Image Enhancement Based on Gray Scale Transformation and Improved Retinex

More Information
  • Received Date: May 13, 2022
  • Revised Date: August 21, 2022
  • Aiming at the problems of low contrast and blurred details of images captured under low-light conditions due to the influence of light and the environment, important information is lost, and an image enhancement method based on grayscale transformation and improved Retinex is proposed. First, the global grayscale transformation function optimized by the gravity search algorithm(GSA) is used to perform grayscale transformation on the grayscale image of each RGB channel of the image to enhance the image illumination intensity and make it closer to the uniform illumination scene. The image is then converted to the HSV color space. The V channel (luminance channel) is processed by the improved multi-scale Retinex (MSR) algorithm; range-based adaptive bilateral filtering and Gabor filtering are used as the surround function of the Retinex algorithm, and the characteristics of the two filters are combined to enhance the brightness and detail of the image. Finally, gamma correction is used to avoid image color casts caused by image fusion. The experimental results show that the enhanced image processed by this method is better than that processed by other methods in subjective and objective evaluation, the color distortion of the image is smaller, and the details are clearer, which paves the way for the subsequent application of the image.
  • [1]
    Dhal K G, Ray S, Das A, et al. A survey on nature-inspired optimization algorithms and their application in image enhancement domain[J]. Archives of Computational Methods in Engineering, 2019, 26(5): 1607-1638. DOI: 10.1007/s11831-018-9289-9
    [2]
    GAO H, ZENG W, CHEN J. An improved gray-scale transformation method for pseudo-color image enhancement[J]. Computer Optics, 2019, 43(1): 78-82. http://www.researchgate.net/publication/332056355_An_improved_gray-scale_transformation_method_for_pseudo-color_image_enhancement
    [3]
    Hassan N, Ullah S, Bhatti N, et al. The Retinex based improved underwater image enhancement[J]. Multimedia Tools and Applications, 2020(1): 1-19.
    [4]
    SHAO Wenbo, LIU Lei, JIANG Jiawei, et al. Low-light-level image enhancement based on fusion and Retinex[J]. Journal of Modern Optics, 2020, 67(13): 1190-1196. DOI: 10.1080/09500340.2020.1823502
    [5]
    牟琦, 魏妍妍, 李姣, 等. 改进的Retinex低照度图像增强算法研究[J]. 哈尔滨工程大学学报, 2018, 39(12): 2001-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201812019.htm

    MU Q, WEI Y Y, LI J, et al. Research on the improved Retinex algorithm for low illumination image enhancement[J]. Journal of Harbin Engineering University, 2018, 39(12): 2001-2010. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201812019.htm
    [6]
    许凤麟, 苗玉彬, 张铭. 基于彩色加权引导滤波-Retinex算法的导航图像增强[J]. 上海交通大学学报, 2019, 53(8): 921-927. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201908007.htm

    XU F L, MIAO Y B, ZHANG M. Navigation image enhancement based on color weighted guided image filtering Retinex algorithm[J]. Journal of Shanghai Jiaotong University, 2019, 53(8): 921-927. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201908007.htm
    [7]
    Oh J G, Hong M C. Adaptive image rendering using a nonlinear mapping-function-based Retinex model[J]. Sensors, 2019, 19(4): 969-985. DOI: 10.3390/s19040969
    [8]
    GAO H, ZENG W, CHEN J. An improved gray-scale transformation method for pseudo-color image enhancement[J]. Computer Optics, 2019, 43(1): 78-82.
    [9]
    SUN X, XU Q, ZHU L. An effective Gaussian fitting approach for image contrast enhancement[J]. IEEE Access, 2019, 7: 31946- 31958.
    [10]
    Verma H K, Pal S. Modified sigmoid function based gray scale image contrast enhancement using particle swarm optimization[J]. Journal of the Institution of Engineers, 2016, 97(2): 243-251.
    [11]
    刘宾, 赵鹏翔, 赵霞, 等. 变能量X射线融合图像的增强算法研究[J]. 光学学报, 2020, 40(18): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202018025.htm

    LIU B, ZHAO P X, ZHAO X, et al. Enhancement algorithm of variable energy X-Ray fusion images[J]. Acta Optica Sinica, 2020, 40(18): 216-221. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202018025.htm
    [12]
    Katirciolu F, Cngz Z. A novel gray image enhancement using the regional similarity transformation function and dragonfly algorithm[J]. El-Cezeri Fen ve Mühendislik Dergisi, 2020, 7(3): 1201-1219.
    [13]
    JIANG S, JI Z, SHEN Y. A novel hybrid particle swarm optimization and gravitational search algorithm for solving economic emission load dispatch problems with various practical constraints[J]. International Journal of Electrical Power & Energy Systems, 2014, 55: 628-644.
    [14]
    魏赟, 欧阳鹏. 基于快速亮通双边滤波器的Retinex图像增强算法[J]. 小型微型计算机系统, 2021, 42(9): 1944-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX202109026.htm

    WEI Y, OU Y P. Retinex image enhancement algorithm based on fast bright-pass bilateral filtering[J]. Journal of Chinese Computer Systems, 2021, 42(9): 1944-1949. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX202109026.htm
    [15]
    WANG Z, WANG Z. A generic approach for cell segmentation based on gabor filtering and area-constrained ultimate erosion[J]. Artificial Intelligence in Medicine, 2020, 107: 101929.
    [16]
    王奎, 黄福珍. 基于光照补偿的HSV空间多尺度Retinex图像增强[J/OL]. 激光与光电子学进展[2023-01-29]. http://kns.cnki.net/kcms/detail/31.1690.TN.20210713.1635.050.html.

    WANG K, Huang F Z. Multi-scale Retinex Image Enhancement in HSV Space Based on Illumination Compensation[J/OL]. Laser & Optoelectronics Progress [2023-01-29]. http://kns.cnki.net/kcms/detail/31.1690.TN.20210713.1635.050.html
    [17]
    ZHANG Z, DAI Y, MA C. Design of selectively multilayered periodic gratings by PSO algorithm for radiative cooling[J]. Optics Communications, 2021, 500: 127323.
    [18]
    Bakhshipour M, Namdari F, Samadinasab S. Optimal coordination of overcurrent relays with constraining communication links using DE–GA algorithm[J]. Electrical Engineering, 2021: 1-15.
    [19]
    吕晓宁, 刘扬阳, 谭政, 等. 一种偏振普适性多尺度实时的图像去雾算法[J]. 光子学报, 2019, 48(8): 117-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201908014.htm

    LU Xiaoning, LIU Yangyang, TAN Zheng, et al. A polarizing universal multi-scale and real-time image defogging algorithm[J]. Acta Photonica Sinica, 2019, 48(8): 117-127. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201908014.htm
    [20]
    吴鹏飞, 王辉亮, 雷思琛, 等. 大气湍流环境下光斑中心定位算法[J/OL]. 光子学报[2022-03-15]. http://kns.cnki.net/kcms/detail/61.1235.O4.20211022.1807.008.html.

    WU Pengfei, WANG Huiliang, LEI Sichen, et al. Spot center localization algorithm in atmospheric turbulence environment[J/OL]. Acta Photonica Sinica [2022-03-15]. http://kns.cnki.net/kcms/detail/61.1235.O4.20211022.1807.008.html.
  • Related Articles

    [1]CHEN Yong, CHEN Xin, ZHANG Yifan, HU Haibo, TAN Ting, LYU Weidong, ZHOU Ji. Design and Spectral Analysis of Short and Medium-Wave Infrared Filter for High Resolution Detectors[J]. Infrared Technology , 2024, 46(5): 592-598.
    [2]XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26.
    [3]YAN Yunbin, CUI Bolun, YANG Tingting, LI Xin, SHI Zhicheng, DUAN Pengfei, SONG Meiping, LIAN Minlong. Multi-modal High-Resolution Hyperspectral Object Detection System Based on Lightweight Platform[J]. Infrared Technology , 2023, 45(6): 582-591.
    [4]PAN Chaomeng, KANG Lizhu, LUO Min, TAO Liang, CHEN Shugang, CHEN Bo, BAI Zhonghong, CUI Hai, XU Canjun, ZHAO Jinsong. Development Status and Application of Space Infrared Camera Optical Technology[J]. Infrared Technology , 2022, 44(11): 1186-1194.
    [5]ZHAO Zixuan, WU Jin, ZHU Lei. High-resolution Remote Sensing Image Semantic Segmentation Based on GLNet and HRNet[J]. Infrared Technology , 2021, 43(5): 437-442.
    [6]DU Yimin, JIA Xuezhi, AN Yuan, KE Shanliang. Design and Analysis of Focusing Mechanism for a High Resolution Space Camera[J]. Infrared Technology , 2019, 41(4): 305-310.
    [7]JIANG Bo, WU Yue-hao, DAI Shi-xun, NIE Qiu-hua, MU Rui, ZHANG Qin-yuan. Design of a Compact Dual-band Athermalized Infrared System[J]. Infrared Technology , 2015, (12): 999-1004.
    [9]CUI Li, ZHAO Xin-liang, LITong-hai, TIAN Hai-xia, WU Hai-qing. Athermalization of Uncooled Infrared Optical System Without Focusing Mechanism[J]. Infrared Technology , 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001
    [10]High Resolution Infrared Image Reconstruction Based on Image Sequence[J]. Infrared Technology , 2002, 24(6): 58-61. DOI: 10.3969/j.issn.1001-8891.2002.06.014
  • Cited by

    Periodical cited type(1)

    1. 张家洪,贾卓杭,郭亮,彭博,王伟成. 近地轨道高精度一体式星敏感器热设计及仿真验证. 红外技术. 2024(04): 400-405 . 本站查看

    Other cited types(1)

Catalog

    Article views (286) PDF downloads (100) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return