TONG Xin, LI Jiapeng, QIU Jie, XIA Ming, HUAI Yang, XIE Kunyuan, CHEN Junyuan. Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators[J]. Infrared Technology , 2024, 46(4): 467-474.
Citation: TONG Xin, LI Jiapeng, QIU Jie, XIA Ming, HUAI Yang, XIE Kunyuan, CHEN Junyuan. Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators[J]. Infrared Technology , 2024, 46(4): 467-474.

Numerical and Experimental Study of Flow Characteristics and Cooling Performance of Micro Miniature Refrigerators

More Information
  • Received Date: September 22, 2023
  • Revised Date: October 22, 2023
  • The micro miniature refrigerator (MMR) is a novel Joule-Thomson cryocooler manufactured using micromachining technology, and its axial length is significantly shorter than that of traditional Joule-Thomson cryocoolers used in infrared detectors. MMRs can significantly reduce the size of infrared detectors when they are successfully integrated. To study the working mechanism of MMRs, a microchannel flow calculation model is established considering the high working pressure and significant change in the gas properties along the microchannels, and the calculation model is verified experimentally. The heat transfer characteristics, microchannel distribution, and overall dimensions of the MMRs are further investigated. Furthermore, an MMR prototype is fabricated based on the calculation results and its cooling performance is studied experimentally. The experimental results correspond well to the predictions of the calculation model. The MMR prototype achieved cooling temperatures of 110 K and 119 K under 10 MPa N2 and Ar working conditions, the cooling power reaches 231 mW and 479 mW, and the cool-down times are 250 s and 70 s, respectively. Consequently, the cooling performance of the MMR prototype is superior to that of the foreign MMR and meets the cooling requirements of infrared detectors.
  • [1]
    李家鹏. 带有预冷级的波纹管自调式快速节流制冷器的研究[D]. 北京: 中国兵器科学院, 2016.

    LI J P. Research on Bellows Self Adjusting Rapid Throttling Refrigerator with Pre cooling Stage[D]. Beijing: Chinese Academy of Ordnance Sciences, 2016.
    [2]
    Little W A. Design and construction of microminiature cryogenic refrigerators, future trends in superconducting electronics[C]// Proc. of APS Conf., 1978, 44: 421-424.
    [3]
    陈国邦. 最新低温制冷技术[M]. 北京: 机械工业出版社, 2003.

    CHEN G B. Low Temperature Engineering Materials[M]. Beijing: China Machine Press, 2003.
    [4]
    Larry D, Capara. Microelectronic System with Integral Cryocooler, and Its Fabrication and Use: US, 6621071 B2[P]. 2003-9-16.
    [5]
    Dominique C, Cottereau. Joule-Thomson Cooler: US, 6202422 B1[P]. 2001-3-20.
    [6]
    Ike C, Ambrose. Stacked Multistage Joule-Thomson Cryostat: US, 5590538[P]. 1997-1-7.
    [7]
    Beskok A, Karniadakis G E, Trimmer W. Rarefaction and compressibility effects in gas microflows[J]. Fluid Engineering, 1996, 118: 448-455. DOI: 10.1115/1.2817779
    [8]
    Berg H R, Seldam C A, Gulik P S. Compressible Laminar flow in a capillary[J]. Fluid Mechanics, 1993, 246: 1-20. DOI: 10.1017/S0022112093000011
    [9]
    Harley J C, Huang Y F, Bau H H, et al. Gas Flow in Microchannels[J]. Journal of Fluid Mechanics, 1995, 284: 257-274. DOI: 10.1017/S0022112095000358
    [10]
    Tae W K, Tae S P. Size effect on compressible flow and heat transfer in microtube with rarefaction and viscous dissipation[J]. Numerical Heat Transfer, 2019, 76(11): 1-18.
    [11]
    Stephen E T, Lok C L, Mohammad F, et al. Experimental investigation of gas flow in microchannels[J]. Journal of Heat Transfer, 2004, 126: 753-763. DOI: 10.1115/1.1797036
    [12]
    Arkilic E B, Breuer K S, Schmidt M A. Mass flow and tangential momentum accomodation in silicon micromachined channels[J]. Fluid Mech, 2001, 437: 29-43. DOI: 10.1017/S0022112001004128
    [13]
    WU P Y, Little W A. Measurement of friction factors for the flow of gases in very fine channels used for microminiature Joule-Thomson refrigerators[J]. Cryogenics, 1983: 273-277(DOI: 10.1016/0011-2275(83)90150-9).
    [14]
    Marco S M, Han L S. A note on limiting laminar Nusselt number in ducts with constant temperature gradient by analogy to thin-plate theory[J]. Journal of Fluids Engineering, 1955, 77(5): 625-630.
    [15]
    李晓永, 王玲, 洪晓麦, 等. 微型节流制冷器降温时间的优化研究[J]. 真空与低温, 2021, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202103011.htm

    LI X Y, WANG L, HONG X M, et al. The optimization on the cooldown time of a miniature JT cooler[J]. Vacuum and Cryogenics, 2021, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202103011.htm
    [16]
    Hsieh C K, SU K C. Thermal radiative properties of glass from 0.32 to 206 μm[J]. Solar Energy, 1979, 22(1): 37-43. DOI: 10.1016/0038-092X(79)90057-4
    [17]
    CAO H S, Vanapalli S, Holland H J, et al. Characterization of a thermoelectric/Joule-Thomson hybrid microcooler[J]. Cryogenics, 2016, 77: 36-42. DOI: 10.1016/j.cryogenics.2016.04.012
  • Cited by

    Periodical cited type(6)

    1. 刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展. 中国电机工程学报. 2025(06): 2171-2196 .
    2. 邱刚,高超,陈杰,谭笑,杨景刚,李鸿泽. 基于热成像技术的支柱瓷绝缘子实时故障诊断研究. 绝缘材料. 2023(06): 100-105 .
    3. 张玲玲,张继冉,许廒,任攀攀,丁立斌. 基于红外图像处理的建筑外窗缺陷能耗分析研究. 红外技术. 2023(09): 996-1004 . 本站查看
    4. 尹林,胡京,王文彬,贺林轩,周恺,苏朝辉,闫磊,刘若溪,王博,屠幼萍. 环境条件对基于无人机红外检测的零值绝缘子检测判据的影响研究. 电瓷避雷器. 2023(05): 171-177 .
    5. 刘新伯,李昊,陈强,梁鉴如,郭梦茹. 复杂背景下多个绝缘子串红外图像分割方法. 计算技术与自动化. 2022(02): 125-130 .
    6. 刘志宏,刘艺林. 电气设备预防性维护技术综述. 科技资讯. 2021(31): 30-32 .

    Other cited types(4)

Catalog

    Article views (65) PDF downloads (28) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return