CAO Yehao, HE Yukun, SHAN Bowen, PENG Yueyang, XIN Hongwei, CHEN Changzheng. Design and Performance Analysis of Focusing and Image Motion Compensation Mechanism for Low Light Level Multispectral Imager[J]. Infrared Technology , 2022, 44(8): 837-845.
Citation: CAO Yehao, HE Yukun, SHAN Bowen, PENG Yueyang, XIN Hongwei, CHEN Changzheng. Design and Performance Analysis of Focusing and Image Motion Compensation Mechanism for Low Light Level Multispectral Imager[J]. Infrared Technology , 2022, 44(8): 837-845.

Design and Performance Analysis of Focusing and Image Motion Compensation Mechanism for Low Light Level Multispectral Imager

More Information
  • Received Date: April 20, 2021
  • Revised Date: June 20, 2021
  • According to the structural characteristics and working conditions of a low light level multispectral imager, an integrated device of focusing and image motion compensation is designed to be smaller, better imaging quality and low illumination imaging. The focusing function is realized by the screw nut and the wedge slider. The realization of the motion compensation function depends on the voice coil motor, and with the dynamic and static two-stage locking device. The reliability and impact resistance of the mechanism are significantly improved. The overall dimension of the structure is 349 mm×192 mm×174 mm, the focusing range is ±2 mm, the image motion compensation is 3 mm, the focusing resolution is 0.05 μm, and the actual positioning accuracy is ±5.7 μm. The first order mode is 225 Hz, which is consistent with the result of finite element simulation. The results of the sine vibration test and random vibration test meet the requirements of the technical indicators. It shows that it has good dynamic stiffness and can effectively avoid the resonance phenomenon. The focusing and image motion compensation mechanism has small size and high structural strength, which meet the working conditions of low light level cameras.
  • [1]
    张元涛. 空间高灵敏度大动态范围微光成像技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018.

    ZHANG Yuantao. Research on Low-light Level Imaging Technology with High Sensitivity and Large Dynamic Range[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2018.
    [2]
    Hong Dae Gi, Hwang Jai Hyuk. Fabrication and performance test of small satellite camera with focus mechanism[J]. Journal of Aerospace System Engineering, 2019, 13(4): 26-36.
    [3]
    杨永斌. 空间光学相机调焦技术研究[J]. 航天器工程, 2011, 20(2): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201102005.htm

    YANG Yongbin. Study on focusing technology of space optical camera[J]. Spacecraft Engineering, 2011, 20(2): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HTGC201102005.htm
    [4]
    李永昌, 金龙旭, 李国宁, 等. 宽视场遥感相机像移速度模型及补偿策略[J]. 武汉大学学报: 信息科学版, 2018, 43(8): 1278-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201808022.htm

    LI Yongchang, JIN Longxu, LI Guoning, et al. Image shift velocity model and compensation strategy of wide-field remote sensing camera[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1278-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201808022.htm
    [5]
    姜紫庆, 贾建军. 空间相机透镜调焦机构的设计与测试[J]. 光学精密工程, 2018, 26(12): 2956-2962. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201812012.htm

    JIANG Ziqing, JIA Jianjun. Design and test of lens focusing mechanism for space camera [J]. Optics and Precision Engineering, 2018, 26(12): 2956-2962. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201812012.htm
    [6]
    柴方茂, 樊延超, 辛宏伟, 等. 焦面二维精密调整机构研究[J]. 光电工程, 2014, 41(1): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201401003.htm

    CHAI Fangmao, FAN Yanchao, XIN Hongwei, et al. Research on two-dimensional precision adjustment mechanism of focal plane[J]. Opto-electronic Engineering, 2014, 41(1): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201401003.htm
    [7]
    唐金松. 简明机械设计手册: 3版[M]. 上海: 上海科学技术出版社, 2009.

    TANG Jinsong. Concise Mechanical Design Manual: 3rd Edition[M]. Shanghai: Shanghai Scientific and Technical Publishers, 2009.
    [8]
    张洪伟, 徐钰蕾, 李全超, 等. 轻型双波段航空相机调焦机构的设计[J]. 激光与光电子学进展, 2016, 53(8): 252-258. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201608034.htm

    ZHANG Hongwei, XU Yulei, LI Quanchao, et al. Design of focusing mechanism for lightweight dual-band aerial camera[J]. Laser & Optoelectronics Progress, 2016, 53(8): 252-258. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201608034.htm
    [9]
    辛宏伟. 小型轻质长条反射镜挠性支撑方案研究[J]. 光机电信息, 2010, 27(7): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDX201007015.htm

    XIN Hongwei. Study on flexible support scheme of small lightweight strip mirror [J]. Opto-mechatronics Information, 2010, 27(7): 51-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GJDX201007015.htm
    [10]
    许志涛, 刘金国, 龙科慧, 等. 高分辨率空间相机调焦机构精度分析[J]. 光学学报, 2013(7): 284-289. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201307047.htm

    XU Zhitao, LIU Jinguo, LONG Kehui, et al. Precision analysis of focusing mechanism of high resolution space camera[J]. Acta Optica Sinica, 2013(7): 284-289. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201307047.htm
    [11]
    刘建, 刘文金. 应用格罗布斯准则判定测量结果中的粗大误差[J]. 木工机床, 2006(2): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MGJC200602005.htm

    LIU Jian, LIU Wenjin. Application of grobs criterion to determine the gross error in measurement results[J]. Woodworking Machine Tool, 2006(2): 26-27. https://www.cnki.com.cn/Article/CJFDTOTAL-MGJC200602005.htm
    [12]
    袁健, 沙巍, 陈长征, 等. 空间相机桁架式支撑结构的集成优化设计[J]. 红外与激光工程, 2015, 44(12): 3661-3666. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201512027.htm

    YUAN Jian, SHA Wei, CHEN Changzheng, et al. Integrated optimization design of truss support structure for space camera[J]. Infrared and Laser Engineering, 2015, 44(12): 3661-3666. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201512027.htm
  • Related Articles

    [1]TAN Dan, ZHANG Zhijie, WANG Luxiang, WANG Dingerkai. Finite Element Simulation Analysis of Nondestructive Testing Parameters in Line Laser Scanning Thermal Imaging[J]. Infrared Technology , 2025, 47(1): 121-129.
    [2]CHEN Yuan, WANG Jinsong, WANG Hao, ZHANG Yunchuan. Thermal Integration Analysis of Optical Machines for Axis Alignment Test Systems[J]. Infrared Technology , 2024, 46(11): 1235-1244.
    [3]CHEN Rui, KONG Derui, TANG Tianmin, XIA Ming. Frequency Accuracy Analysis of Linear Stirling Refrigerator Inverter[J]. Infrared Technology , 2023, 45(1): 95-101.
    [4]WANG Weiqiang, JIA Xiaohong, FU Kuisheng, HAN Yumeng. Guidance Precision Analysis Based on Airborne IRCM Stochastic Process[J]. Infrared Technology , 2019, 41(2): 163-170.
    [5]ZOU Xiaofeng, ZHANG Juan, ZHANG Xinguang, LIU Chengguo, YANG Jinpeng. The Analysis of Infrared Radiation Measurement Accuracy in the Dynamic Environment[J]. Infrared Technology , 2018, 40(6): 598-602.
    [6]YANG Shuai, CHENG Hong, LI Ting, SUN Wenbang. UAV Reconnaissance Images Targeting Method and Accuracy Analysis[J]. Infrared Technology , 2016, 38(10): 825-831.
    [7]WANG Fu-guo, YANG Fei, CHEN Bao-gang, LI Yan-wei. Lightweight Structure Design,Analysis and Test of Lager Aperture and Prime Focus Optical System[J]. Infrared Technology , 2011, 33(1): 4-8. DOI: 10.3969/j.issn.1001-8891.2011.01.002
    [8]ZHOU Lian-jun, ZOU Peng-cheng, LI Jin-hui, LI Yu, LI Xin-rong. The Analysis of Stress Using FEA for the Pixel Structure of Uncooled Microbolometer Arrays[J]. Infrared Technology , 2010, 32(2): 63-67. DOI: 10.3969/j.issn.1001-8891.2010.02.001
    [9]ZHAO Jing-yuan, WANG Li-ming, LIU Bin. The Finite Element Simulation and Analysis of the Infrared NDT for Inner Defects in Casting Product[J]. Infrared Technology , 2008, 30(7): 429-432. DOI: 10.3969/j.issn.1001-8891.2008.07.016
    [10]Accuracy Analysis of 3D Passive Location with Infrared[J]. Infrared Technology , 2002, 24(6): 37-40. DOI: 10.3969/j.issn.1001-8891.2002.06.008
  • Cited by

    Periodical cited type(1)

    1. 杨仕华,王小勇,刘星,贺金平,李强,袁鑫. 基于视频单曝光压缩成像的弱光遥感成像技术. 光学学报. 2025(06): 358-367 .

    Other cited types(0)

Catalog

    Article views (143) PDF downloads (36) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return