YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.
Citation: YANG Dong, SHEN Jun, GAO Kaicong, LENG Chongqian, NIE Changbin, ZHANG Zhisheng. Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition[J]. Infrared Technology , 2023, 45(6): 559-566.

Infrared Response of Lead Sulfide Detector Synthesized from Chemical Bath Deposition

More Information
  • Received Date: May 10, 2022
  • Revised Date: June 06, 2022
  • A lead sulfide detector has the advantages of high short-wave infrared sensitivity and low auger noise. The lead sulfide film synthesized by chemical bath deposition can be compatible with the CMOS semiconductor process, which is beneficial for identifying low-cost and high-performance surface array detectors. However, the current research on lead sulfide detectors synthesized by chemical bath deposition primarily focuses on the larger unit detectors. In this study, the synthesis of lead sulfide film was based on chemical bath deposition. Lead sulfide photodetectors of 10–200 μm size were prepared using an ion beam etching process and the photoelectric performance of the device was studied in terms of resistance, aspect ratio, line width, and other parameters. The results showed that the responsivity of the PbS photodetector increased gradually as the size decreased. Under the irradiation of 1550 nm short-wave infrared light, the responsivity of the 10 µm photodetector was 51.68 A/W, which was approximately 123 times the responsivity of the 200 μm photodetector. Moreover, the PbS photodetector also had a good wide-range photoelectric response at visible light and 2.7 μm infrared wavelengths. The micron-size detector of this study can provide support for the research of lead sulfide detectors.
  • [1]
    胡伟达, 李庆, 陈效双, 等. 具有变革性特征的红外光电探测器[J], 物理学报, 2019, 68(12): 7-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201912001.htm

    HU W D, LI Q, CHEN X S, et al. Recent progress on advanced infrared photodetectors[J]. Acta Physica Sinica, 2019, 68(12): 7-41. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201912001.htm
    [2]
    SHI L L, LIANG Q B, WANG W Y, et al. Research progress in organic photomultiplication photodetectors[J]. Nanomaterials (Basel), 2018, 8(9): 713. DOI: 10.3390/nano8090713
    [3]
    李国伟. PbS红外探测器的制备和性能研究[D]. 成都: 电子科技大学, 2011.

    LI G W. Study on Preparation and Performance of PbS Infrared Detector[D]. Chengdu: University of Electronic Science and Technology of China, 2011.
    [4]
    丁瑞军, 杨建荣, 何力, 等. 碲镉汞红外焦平面器件技术进展[J]. 红外与激光工程, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm

    DING R J, YANG J R, HE L, et al. Development of technologies for HgCdTe IRFPA[J]. Infrared and Laser Engineering, 2020, 49(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001010.htm
    [5]
    李雪, 邵秀梅, 李淘, 等. 短波红外InGaAs焦平面探测器研究进展[J]. 红外与激光工程, 2020, 49(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm

    LI X, SHAO X M, LI T, et al. Developments of short-wave infrared InGaAs focal plane detectors[J]. Infrared and Laser Engineering, 2020, 49(1): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202001006.htm
    [6]
    周连军, 韩福忠, 白丕绩, 等. 高温碲镉汞中波红外探测器的国内外进展[J]. 红外技术, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002

    ZHOU L J, HAN F Z, BAI P J, et al. Review of HOT MW infrared detector using MCT technology[J]. Infrared Technology, 2017, 39(2): 116-124. http://hwjs.nvir.cn/article/id/hwjs201702002
    [7]
    DIEZHANDINO J, VERGARA G, PEREZ G, et al. Monolithic integration of spectrally selective uncooled lead selenide detectors for low cost applications[J]. Applied Physics Letters, 2003, 83(14): 2751-2753. DOI: 10.1063/1.1615314
    [8]
    VERGARA G, LINARES HERRERO R, GUTíERREZ ÁLVAREZ R, et al. 80×80 VPD PbSe: the first uncooled MWIR FPA monolithically integrated with a Si-CMOS ROIC[C]//Pro. of SPIE, 2013, 8704: 87041M.
    [9]
    WENG B B, QIU J J, ZHAO L H, et al. Recent development on the uncooled mid-infrared PbSe detectors with high detectivity[C]// Pro. of SPIE, 2013, 8993: 899311.
    [10]
    KONSTANTATOS G, CLIFFORD J, LEVINA L, et al. Sensitive solution-processed visible-wavelength photodetectors[J]. Nature Photonics, 2007, 1(9): 531-534. DOI: 10.1038/nphoton.2007.147
    [11]
    MI L F, CHANG Y J, ZHANG Y, et al. Hybrid perovskite exchange of PbS quantum dots for fast and high-detectivity visible-near-infrared photo-detectors[J]. Journal of Materials Chemistry C, 2020, 8(23): 7812-7819. DOI: 10.1039/D0TC01373K
    [12]
    YAN S Y, YANG Q, FENG S L, et al. Effect of air atmosphere sensitization on formation of PbSe p-n junctions for high-performance photodetectors[J]. Journal of Electronic Materials, 2020, 49(8): 4929-4935. DOI: 10.1007/s11664-020-08215-6
    [13]
    DONG R, BI C, DONG Q F, et al. An Ultraviolet-to-NIR broad spectral nanocomposite photodetector with gain[J]. Advanced Optical Materials, 2014, 2(6): 549-554. DOI: 10.1002/adom.201400023
    [14]
    KUFER D, LASANTA T, BERNECHEA M, et al. Interface engineering in hybrid quantum dot-2D phototransistors[J]. Acs Photonics, 2016, 3(7): 1324-1330.
    [15]
    SONG X X, ZHANG Y T, ZHANG H T, et al. Graphene and PbS quantum dot hybrid vertical phototransistor[J]. Nanotechnology, 2017, 28(14): 145201.
    [16]
    KONSTANTATOS G. SARGENT E H. PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain[J]. Applied Physics Letters, 2007, 91(17): 173505.
    [17]
    LAUER R B. WILLIAMS F. Photoelectronic properties of graded composition crystals of Ii-Vi semiconductors[J]. Journal of Applied Physics, 1971, 42(7): 2904-2910.
    [18]
    BUSCEMA M, ISLAND J O, GROENENDIJK D J, et al. Photocurrent generation with two-dimensional van der Waals semiconductors[J]. Chemical Society Reviews, 2015, 44(11): 3691-3718.
    [19]
    KONSTANTATOS G, BADIOLI M, GAUDREAU L, et al. Hybrid graphene-quantum dot phototransistors with ultrahigh gain[J]. Nat Nanotechnol, 2012, 7(6): 363-368.
    [20]
    KONSTANTATOS G. SARGENT E H. Solution-processed quantum dot photodetectors[C]//Proceedings of IEEE, 2009, 97(10): 1666-1683.
  • Related Articles

    [1]ZHANG Kai, LI Haiying, LIU Dong, ZHANG Yingxu, YUAN Shouzhang, LI Peiyuan, LI Hongfu, ZHAO Wenli, ZHA Yun, ZHAO Yusong. Research on Reliability Evaluation Model and Accelerated Aging Demonstration of Infrared Detector Assembly[J]. Infrared Technology , 2025, 47(6): 671-680.
    [2]SUN Hongsheng, CHEN Xiaoping, XIA Ming, CHEN Jun, HUANG Yibin, GAN Youyu, LI Shufen. Research Progress and Key Technology Analysis of Variable Cold Aperture Infrared Detector[J]. Infrared Technology , 2024, 46(4): 376-383.
    [3]LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.
    [4]XIONG Xiong, MA Xinjian, MAO Jianhong, JIN Xin, WU Jianle, LI Ruiping, DU Yu. Wire Bonding of Infrared Detector Based on Shock Response Spectrum[J]. Infrared Technology , 2023, 45(6): 575-581.
    [5]YANG Xiaole, ZHOU Feng, SHI Manli, LIU Wei, LIU Yanjie, LIU Yiliang. Splicing Structure of Ultra-long Linear Infrared Detector[J]. Infrared Technology , 2023, 45(6): 567-574.
    [6]MA Xingzhao, TANG Libin, ZHANG Yuping, ZUO Wenbin, WANG Shanli, JI Rongbin. Research Progress of Silicon-based BIB Infrared Detector[J]. Infrared Technology , 2023, 45(1): 1-14.
    [7]ZHANG Hongfei, ZHU Xubo, LI Mo, YAO Guansheng, LYU Yanqiu. Research Progress of Mid-/Mid-Wavelength Dual-color Antimonide-based Infrared Detector[J]. Infrared Technology , 2022, 44(9): 904-911.
    [8]XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95.
    [9]WANG Jian, ZHANG Lei, ZENG Xin, DAI Fang, XU Chunye. Design of Integrated Image Signal Processing Chip for Infrared Detector[J]. Infrared Technology , 2021, 43(11): 1044-1048.
    [10]LI Rujie, TANG Libin, ZHANG Yuping, ZHAO Qing. Research Progress of Infrared Colloidal Quantum Dots and Their Photodetectors[J]. Infrared Technology , 2020, 42(5): 405-419.
  • Cited by

    Periodical cited type(7)

    1. 翟书娟,索艳滨,李亚平. 基于多尺度加权引导滤波的弱光图像细节增强研究. 激光杂志. 2025(04): 140-145 .
    2. 张荐,梁奥,花海洋,刘天赐,李峙含. 基于策略梯度和伪孪生网络的异源图像匹配. 光学精密工程. 2025(06): 945-960 .
    3. 郝博,谷继明,刘力维. 基于BF-YOLOv5的红外及可见光图像融合的目标检测. 电光与控制. 2024(05): 72-76 .
    4. 李威,田时舜,刘广丽,邹文斌. M-SWF域红外与可见光图像结构相似性融合. 红外技术. 2024(03): 280-287 . 本站查看
    5. 刘志坚,孟欣雨,刘航,罗灵琳,张德春. 基于改进ResNet34网络的变电站设备巡检图像分类识别的方法. 电机与控制应用. 2024(05): 50-60 .
    6. 何炳阳,张宇,肖逸凡,李阳年,陈露,祁雪燕. 基于场景理解的彩色融合图像质量主观评价. 电光与控制. 2024(06): 81-86 .
    7. 郝昱权. 基于NSST与深度学习的红外图像与可见光图像融合算法. 河北软件职业技术学院学报. 2024(04): 12-17 .

    Other cited types(4)

Catalog

    Article views (352) PDF downloads (65) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return