Citation: | WANG Guangyuan, DENG Zhengdong, LU Zhao, WANG Daqing, SHI Yue, XU Haoli, ZHAO Xiaoning. Snow Information Recognition based on GF-6 PMS Images[J]. Infrared Technology , 2021, 43(6): 543-556. |
[1] |
HE C, Liou K N, Takano Y, et al. Impact of grain shape and multiple black carbon internal mixing on snow albedo: Parameterization and radiative effect analysis[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 1253-1268. DOI: 10.1002/2017JD027752
|
[2] |
Butt M J, Bilal M. Application of snowmelt runoff model for water resource management[J]. Hydrological Processes, 2011, 25(24): 3735-3747. DOI: 10.1002/hyp.8099
|
[3] |
LIU M, XIONG C, PAN J, et al. High-resolution reconstruction of the maximum snow water equivalent based on remote sensing data in a mountainous area[J]. Remote Sensing, 2020, 12(3): 460-479. DOI: 10.3390/rs12030460
|
[4] |
XU L, Dirmeyer P. Snow–atmosphere coupling strength. Part Ⅱ: Albedo effect versus hydrological effect[J]. Journal of Hydrometeorology, 2013, 14(2): 404-418. DOI: 10.1175/JHM-D-11-0103.1
|
[5] |
汪左. 新疆玛纳斯河流域典型区雪水当量的SAR反演研究[D]. 南京: 南京大学, 2014.
WANG Zuo. Retrieval of Snow Water Equivalence Using SAR Data for Typical Area of Manas River Basin in Xinjiang, China[D]. Nanjing: Nanjing University, 2014.
|
[6] |
贺广均. 联合SAR与光学遥感数据的山区积雪识别研究[D]. 南京: 南京大学, 2015.
HE Guangjun. Snow Recognition in Mountainous Areas Based on SAR and Optical Remote Sensing Data[D]. Nanjing: Nanjing University, 2015.
|
[7] |
Barnes J C, Bowley C J. Snow cover distribution as mapped from satellite photography[J]. Water Resources Research, 1968, 4(2): 257-272. DOI: 10.1029/WR004i002p00257
|
[8] |
冯学智. 卫星雪盖制图及其应用研究概况[J]. 遥感技术动态, 1989(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS198901004.htm
FENG Xuezhi. Satellite snow cover mapping and its application[J]. Development of Remote Sensing Technology, 1989(1): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS198901004.htm
|
[9] |
冯学智. 卫星雪盖制图中的一些技术问题[J]. 遥感技术与应用, 1991(4): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS199104001.htm
FENG Xuezhi. Some technical problems in satellite snowcover mapping[J]. Remote Sensing Technology and Application, 1991(4): 10-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS199104001.htm
|
[10] |
白磊, 郭玲鹏, 马杰, 等. 基于数字相机拍摄影像的山区积雪消融动态观测研究——以天山积雪站为例[J]. 资源科学, 2012, 34(4): 620-628. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201204006.htm
BAI Lei, GUO Lingpeng, MA Jie, et al. Observation and analysis of the process of snow melting at Tianshan station using the images by digital camera[J]. Resouces Science, 2012, 34(4): 620-628. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201204006.htm
|
[11] |
Kim S-H, Hong C-H. Antarctic land-cover classification using IKONOS and Hyperion data at Terra Nova Bay[J]. International Journal of Remote Sensing, 2012, 33(22): 7151-7164. DOI: 10.1080/01431161.2012.700136
|
[12] |
ZHU L, XIAO P, FENG X, et al. Support vector machine-based decision tree for snow cover extraction in mountain areas using high spatial resolution remote sensing image[J]. Journal of Applied Remote Sensing, 2014, 8(1): 084698. DOI: 10.1117/1.JRS.8.084698
|
[13] |
Dozier J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper[J]. Remote Sensing of Environment, 1989, 28(1): 9-22. http://static1.1.sqspcdn.com/static/f/891472/15152129/1321451632750/Dozier_J._1989.pdf?token=sMvVhVmXaLvHsiAGq%2FlmCvgkjlA%3D
|
[14] |
Cea C, Cristóbal J, Pons X. An improved methodology to map snow cover by means of Landsat and MODIS imagery[C]//2007 IEEE International Geoscience and Remote Sensing Symposium, 2007: 4217-4220.
|
[15] |
Khosla D, Sharma J, Mishra V. Snow cover monitoring using different algorithm on AWiFS sensor data[J]. International Journal of Advanced Engineering Sciences and Technologies, 2011, 7(1): 42-47.
|
[16] |
延昊. 利用MODIS和AMSR-E进行积雪制图的比较分析[J]. 冰川冻土, 2005(4): 515-519. DOI: 10.3969/j.issn.1000-0240.2005.04.008
YAN Hao. A comparison of MODIS and passive microwave snow mapping[J]. Journal of Glaciology and Geocryology, 2005(4): 515-519. DOI: 10.3969/j.issn.1000-0240.2005.04.008
|
[17] |
郝晓华, 王建, 李弘毅. MODIS雪盖制图中NDSI阈值的检验——以祁连山中部山区为例[J]. 冰川冻土, 2008(1): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200801020.htm
HAO Xiaohua, WANG Jian, LI Hongyi. Evaluation of the NDSI threshold value in mapping snow cover of MODIS[J]. Journal of Glaciology and Geocryology, 2008(1): 132-138. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200801020.htm
|
[18] |
汪凌霄. 玛纳斯河流域山区积雪遥感识别研究[D]. 南京: 南京大学, 2012.
WANG Lingxiao. Retrieval of Snow Water Equivalence Using SAR Data for Typical Area of Manas River Basin in Xinjiang, China[D]. Nanjing: Nanjing University, 2012.
|
[19] |
Baghdadi N, Gauthier Y, Bernier M. Capability of multitemporal ERS-1 SAR data for wet-snow mapping[J]. Remote Sensing of Environment, 1997, 60(2): 174-186. DOI: 10.1016/S0034-4257(96)00180-0
|
[20] |
Rott H, Nagler T. Capabilities of ERS-1 SAR for snow and glacier monitoring in alpine areas[J]. European Space Agency-Publications-ESA SP, 1994, 361: 965-965. http://www.researchgate.net/publication/245605630_Capabilities_of_ERS-1SAR_for_snow_and_glacier_monitoring_in_Alpine_areas
|
[21] |
Koskinen J T, Pulliainen J T, Hallikainen M T. The use of ERS-1 SAR data in snow melt monitoring[J]. IEEE Transactions on Geoscience Remote Sensing, 1997, 35(3): 601-610. DOI: 10.1109/36.581975
|
[22] |
Luojus K P, Pulliainen J T, Cutrona A B, et al. Comparison of SAR-based snow-covered area estimation methods for the boreal forest zone[J]. IEEE Geoscience Remote Sensing Letters, 2009, 6(3): 403-407. DOI: 10.1109/LGRS.2009.2014786
|
[23] |
Caves R, Hodson A, Turpin O, et al. Field verification of SAR wet snow mapping in a non-Alpine environment[J]. European Space Agency- Publications- ESA SP, 1998, 441: 519-526. http://www.researchgate.net/publication/228650728_Field_verification_of_SAR_wet_snow_mapping_in_a_non-Alpine_environment/download
|
[24] |
Malnes E, Guneriussen T. Mapping of snow covered area with Radarsat in Norway[C]//IEEE International Geoscience and Remote Sensing Symposium, 2002: 683-685.
|
[25] |
Kelly R. The AMSR-E snow depth algorithm: description and initial results[J]. Journal of the Remote Sensing Society of Japan, 2009, 29(1): 307-317. https://www.jstage.jst.go.jp/article/rssj/29/1/29_1_307/_pdf/-char/en
|
[26] |
PAN J, JIANG L, ZHANG L. Wet snow detection in the south of China by passive microwave remote sensing[C]//IEEE International Geoscience and Remote Sensing Symposium, 2012: 4863-4866.
|
[27] |
Singh P R, Gan T Y. Retrieval of snow water equivalent using passive microwave brightness temperature data[J]. Remote Sensing of Environment, 2000, 74(2): 275-286. DOI: 10.1016/S0034-4257(00)00121-8
|
[28] |
LIU X, JIANG L, WU S, et al. Assessment of methods for passive microwave snow cover mapping using FY-3C/MWRI data in China[J]. Remote Sensing, 2018, 10(4): 524-545. DOI: 10.3390/rs10040524
|
[29] |
Hinkler J, Pedersen S B, Rasch M, et al. Automatic snow cover monitoring at high temporal and spatial resolution, using images taken by a standard digital camera[J]. International Journal of Remote Sensing, 2002, 23(21): 4669-4682. DOI: 10.1080/01431160110113881
|
[30] |
Keshri A, Shukla A, Gupta R. ASTER ratio indices for supraglacial terrain mapping[J]. International Journal of Remote Sensing, 2009, 30(2): 519-524. DOI: 10.1080/01431160802385459
|
[31] |
Hinkler J, Ørbæk J B, Hansen B. Detection of spatial, temporal, and spectral surface changes in the Ny-Ålesund area 79 N, Svalbard, using a low cost multispectral camera in combination with spectroradiometer measurements[J]. Physics Chemistry of the Earth, Parts A/B/C, 2003, 28(28-32): 1229-1239. DOI: 10.1016/j.pce.2003.08.059
|
[32] |
XIAO X M, SHEN Z X, QIN X G. Assessing the potential of VEGETATION sensor data for mapping snow and ice cover: a normalized difference snow and ice index[J]. International Journal of Remote Sensing, 2001, 22(13): 2479-2487. DOI: 10.1080/01431160119766
|
[33] |
XIAO X, Moore B, QIN X, et al. Large-scale observations of alpine snow and ice cover in Asia: using multi-temporal vgetation sensor data[J]. International Journal of Remote Sensing, 2002, 23(11): 2213-2228. DOI: 10.1080/01431160110076180
|
[34] |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
|
[1] | SUN Hongyu, LI Jun, YUAN Bo, ZHOU Yuchao. Deep Learning-Based Polarization Image Fusion Method[J]. Infrared Technology , 2025, 47(2): 193-200. |
[2] | YAN Danzhao, CHEN Jing, LAN Wangyao, LIAO Yipeng. Non-contact Diagnosis of Cable Joint Insulation Deterioration Based on Deep Learning Surface Temperature[J]. Infrared Technology , 2024, 46(6): 712-721. |
[3] | CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531. |
[4] | ZHANG Yi, FAN Yugang. Defect Detection of Eddy Current Thermal Imaging of Workpiece Based on Deep Learning and Domain Adaptation[J]. Infrared Technology , 2024, 46(3): 347-353. |
[5] | DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128. |
[6] | FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943. |
[7] | FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55. |
[8] | YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433. |
[9] | WANG Dan, CHEN Liang. Super-resolution Reconstruction of Infrared Images in Night Environments Based on Deep-learning[J]. Infrared Technology , 2019, 41(10): 963-969. |
[10] | MIN Zhaoyang, ZHAO Wenjie. Target Anti-Jamming Tracking Algorithm Based on Depth Learning[J]. Infrared Technology , 2018, 40(2): 176-182. |
1. |
黄坤琳,吴国周,徐维新,李利东,王海梅,李航,李自翔,司荆柯,刘洪宾,吴成娜. 呼伦贝尔东部农田区动态融雪过程及其影响因子. 干旱区研究. 2024(09): 1514-1526 .
![]() | |
2. |
黄林,李晖,康璇. 基于Freeman全极化分解的干雪识别指数模型构建. 厦门理工学院学报. 2023(05): 40-48 .
![]() |