PENG Jingjing, YANG Kun, LI Meng. High Sensitivity Methane Detection System Based on Double Spherical Mirror Multi-pass Cell[J]. Infrared Technology , 2024, 46(12): 1425-1432.
Citation: PENG Jingjing, YANG Kun, LI Meng. High Sensitivity Methane Detection System Based on Double Spherical Mirror Multi-pass Cell[J]. Infrared Technology , 2024, 46(12): 1425-1432.

High Sensitivity Methane Detection System Based on Double Spherical Mirror Multi-pass Cell

More Information
  • Received Date: September 12, 2023
  • Revised Date: October 17, 2023
  • To accurately measure the concentration of trace gas methane (CH4) in ambient atmosphere, tunable diode laser absorption spectroscopy (TDLAS) technology was adopted, and a distributed feedback (DFB) laser with a central wavelength of 1653 nm was selected as the laser light source to build a CH4 detection system. For the detector noise and optical interference fringe noise in the system, radio frequency (RF) noise source, multiple averaging, and Kalman filtering were added to improve the detection accuracy of the system. The experimental results show that the calibrated CH4 concentration has an ideal linear relationship with the peak value of the second harmonic signal detected by the system by combining the long optical path multi-pass cell (MPC) and TDLAS technology. The minimum detection limit of the Kalman filtered system is 0.14 ppb when the integration time is 213 s. By determining the optimal parameters for adding RF noise sources and comparing multiple averaging techniques, a measurement accuracy of 144 ppb at an averaging time of 10 s was achieved. After applying Kalman filtering for data processing, the measurement accuracy reached 134 ppb, indicating that Kalman filtering can achieve high measurement accuracy.

  • [1]
    ZHOU X, LIU P, ZHOU X. Generalized design of simple, stable and compact nested multipass cells with a reentrant symmetric concentric circle pattern[J]. Optics Express, 2023, 31(3): 4152-4163. DOI: 10.1364/OE.479762
    [2]
    XIA J, FENG C, ZHU F, et al. A sensitive methane sensor of a ppt detection level using a mid-infrared interband cascade laser and a long-path multipass cell[J]. Sensors and Actuators B: Chemical, 2021, 334(30): 1-8. http://www.sciencedirect.com/science/article/pii/S0925400521002094
    [3]
    田兴, 朱乐文, 李龙, 等. 基于射频噪声源下的离轴积分腔输出光谱技术中腔镜反射率标定研究[J]. 大气与环境光学学报, 2023, 18(5): 494-502.

    TIAN Xing, ZHU Lewen, LI Long, et al. Study on reflectivity calibration of cavity mirror in off-axis integrated cavity output spectrum technology based on RF noise source [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 494-502.
    [4]
    赵成龙, 黄丹飞, 刘智颖, 等. 开放型TDLAS-WMS技术CO2痕量气体检测[J]. 光子学报, 2022, 51(2): 333-342.

    ZHAO Chenglong, HUANG Danfei, LIU Zhiying, et al. Open TDLAS-WMS technology for CO2 trace gas detection[J]. Acta Photonica, 2022, 51(2): 333-342.
    [5]
    冯仕凌, 崔琪, 郭心骞, 等. 小波降噪对TDLAS干涉抑制的研究[J]. 大气与环境光学学报, 2022, 17(3): 328-335.

    FENG Shiling, CUI Qi, GUO Xinqian, et al. Study on interference suppression of TDLAS by wavelet denoising [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 328-335.
    [6]
    梁承权, 吕德深, 朱浩亮, 等. 基于TDLAS技术与小波变换去噪算法的甲烷浓度检测[J]. 红外技术, 2023, 45(2): 209-216. http://hwjs.nvir.cn/article/id/7d1d155c-19dc-4999-8757-99bca5fc0240

    LIANG Chengquan, LV Deshen, ZHU Haoliang, et al. Methane concentration detection based on TDLAS technology and wavelet transform denoising algorithm[J]. Infrared technology, 2023, 45(2): 209-216. http://hwjs.nvir.cn/article/id/7d1d155c-19dc-4999-8757-99bca5fc0240
    [7]
    李恒宽, 朴亨, 王鹏, 等. 基于近红外吸收光谱技术的高精度CO2检测系统的研制[J]. 红外与激光工程, 2023, 52(3): 115-121.

    LI Hengkuan, PARK Heng, WANG PANG, et al. Development of high-precision CO2 detection system based on near infrared absorption spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(3): 115-121.
    [8]
    李金义, 杨雪, 张宸阁, 等. 参数优化的Kalman滤波用于激光吸收光谱气体测量[J]. 光学学报, 2022, 42(18): 207-214.

    LI Jinyi, YANG Xue, ZHANG Chenge, et al. Parameter-optimized Kalman filter for gas measurement in laser absorption spectrum[J]. Acta Optica Sinica, 2022, 42(18): 207-214.
    [9]
    CAO Y, MA Y, CHENG X, et al. Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell[J]. Opt Express, 2022, 30(18): 32010-32018. DOI: 10.1364/OE.465629
    [10]
    梁宇, 刘铁根, 刘琨, 等. 基于变分模态分解算法的气体检测优化方法[J]. 中国激光, 2021, 48(7): 135-144.

    LIANG Yu, LIU Tiegen, LIU Kun, et al. Optimization method of gas detection based on variational modal decomposition algorithm [J]. China Laser, 2021, 48(7): 135-144.
    [11]
    鲁一冰, 刘文清, 张玉钧, 等. 一种自适应层进式Savitzky -Golay光谱滤波算法及其应用[J]. 光谱学与光谱分析, 2019, 39(9): 2657-2663.

    LU Yibing, LIU Wenqing, ZHANG Yujun, et al. An adaptive hierarchical Savitzky-Golay spectral filtering algorithm and its application[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2657-2663.
  • Related Articles

    [1]ZHAO Qiang, LIU Shengjie, HAN Dongcheng, LIU Changyu, YANG Shizhi. Improved K-means Clustering-based Defect Detection Method for Photovoltaic Panels[J]. Infrared Technology , 2024, 46(4): 475-482.
    [2]WANG Luxiang, ZHANG Zhijie, WANG Quan, CHEN Haoze. Infrared Image Defect Detection Based on the Algorithm of Intuitionistic Fuzzy C-Means Clustering[J]. Infrared Technology , 2022, 44(11): 1220-1227.
    [3]GUO Feng, ZHENG Lei, GE Huangxu, YAN Biwu, GUO Yifan. Infrared Image Segmentation Method Based on Fuzzy Clustering with Similarity Thresholding[J]. Infrared Technology , 2022, 44(8): 863-869.
    [4]SONG Shanshan, ZHAI Xuping. Improved Infrared Anomaly Target Detection Algorithm Based on Single Gaussian Model[J]. Infrared Technology , 2021, 43(9): 885-888,894.
    [5]YU Bin, WAN Yanzhen, CHEN Sichao, WENG Liguo. A Density-similarity-factor-based Segmentation Method for Infrared Images of Electric Equipment[J]. Infrared Technology , 2017, 39(12): 1139-1143.
    [6]LI Xiying, HUANG Qiuxiao. Indoor Crowd Density Classification in Infrared Images Based on Fusing High-order Statistics of Histogram with Gray Level Co-occurrence Matrix Features[J]. Infrared Technology , 2017, 39(7): 626-631,637.
    [7]LIU Zi-yan, QI Jia. Hierarchical Clustering Algorithm of Real-Time Image Edge Detection on FPGA[J]. Infrared Technology , 2014, (1): 53-57.
    [8]An Improved Infrared Image Segmentation Algorithm Using Fuzzy Kernel Clustering[J]. Infrared Technology , 2008, 30(12): 717-721. DOI: 10.3969/j.issn.1001-8891.2008.12.009
    [9]MIN Xiang-long, WANG Jiang-an, WU Rong-hua. An Infrared Image High-Density Noise Filtering Algorithm Based on Two-pass Crest Value Judgment[J]. Infrared Technology , 2008, 30(3): 168-172. DOI: 10.3969/j.issn.1001-8891.2008.03.012
    [10]A Target Recognition Method of Imaging Based on Fuzzy Cluster[J]. Infrared Technology , 2008, 30(1): 24-26,30. DOI: 10.3969/j.issn.1001-8891.2008.01.006

Catalog

    Article views (30) PDF downloads (16) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return