LI Yaqing, LI Hanyan, ZHANG Liyun, CHEN Xuhua, LI Xiaolu, QIU Yongsheng, HE Jun, GAO Tianli, DU Peide, ZHOU Shengtao. Evaluation of Direct-coupled Intensified CMOS Camera[J]. Infrared Technology , 2024, 46(6): 699-706, 721.
Citation: LI Yaqing, LI Hanyan, ZHANG Liyun, CHEN Xuhua, LI Xiaolu, QIU Yongsheng, HE Jun, GAO Tianli, DU Peide, ZHOU Shengtao. Evaluation of Direct-coupled Intensified CMOS Camera[J]. Infrared Technology , 2024, 46(6): 699-706, 721.

Evaluation of Direct-coupled Intensified CMOS Camera

More Information
  • Received Date: November 19, 2023
  • Revised Date: January 12, 2024
  • Available Online: June 23, 2024
  • An ICMOS is fabricated by directly coupling the output window of the image intensifier with a CMOS resulting in the characteristics of high sensitivity, fast response, and adjustable spectral range. In this study, the influence of the cathode, microchannel plate, phosphor screen, CMOS, and other components on the imaging performance of direct-coupled ICMOS are analyzed according to the composition of ICMOS, thereby proposing the principle for selecting the image intensifier and CMOS for ICMOS. The advantages of image intensifier manufacturing combined with the actual low-light imaging performance of direct-coupling ICMOS are verified on an 18 mm NVT-7 image intensifier and 1-inch CMOS. The results show that the ICMOS camera can be used under 5×10-4 lx light conditions with a resolution of 16 lp/mm. In addition, the gain of the image intensifier for ICMOS should not exceed 4000 cd/(m2·lx), and the output brightness of the phosphor screen has minimal effect on performance under the condition of an appropriate gain.

  • [1]
    Roberto S, Mark A, Maurizio C, et al. A novel approach to night vision imaging systems development, integration and verification in military aircraft[C]//Aerosp. Sci. Technol., 2013, 31: 10-23.
    [2]
    Beal G, Boucharlat G, Cappechi F. 512×512 CCD visible imager with a fiber-optic faceplate[C]//Proc. of SPIE, 1985, 570: 20-26.
    [3]
    WANG L L. Fibre-optical light corn and its application[J]. Sci/tech Information Development and Economy, 2002, 12(6): 87-88.
    [4]
    王红球. 用于生物探测的制冷型ICCD系统[D]. 北京: 清华大学, 2007.

    WANG Hongqiu. Refrigerated ICCD System for Biological Detection[D]. Beijing: Tsinghua University, 2007.
    [5]
    闫晓梅, 王志社. 基于光锥耦合的X射线像增强器[J]. 光学学报, 2010(5): 1478-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201005051.htm

    YAN Xiaomei, WANG Zhishe. X-ray image intensifier based on optical cone coupling [J]. Acta Opticasinica, 2010(5): 1478-1482 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201005051.htm
    [6]
    高天阳, 曹峰梅, 王霞, 等. 微光像增器与大尺寸CMOS的直接耦合[J]. 红外技术, 2021, 43(6): 537-542. http://hwjs.nvir.cn/cn/article/id/4804f6ce-941d-4429-bd63-9fa7674c861d

    GAO Tianyang, CAO Fengmei, WANG Xia, et al. Direct coupling of low light image intensifier with large size CMOS[J]. Infrared Technology, 2021, 43(6): 537-542. http://hwjs.nvir.cn/cn/article/id/4804f6ce-941d-4429-bd63-9fa7674c861d
    [7]
    崔志刚, 白廷柱, 高稚允. 翻修贴片设备在ICCD光锥耦合中的应用[J]. 光学技术, 2008, 34(2): 1002-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200802024.htm

    CUI Zhigang, BAI Tingzhu, GAO Zhiyun. Rework placement system applied in ICCD fiber optic taper mounting procedure[J]. Optical Technique, 2008, 34(2): 1002-1582. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJS200802024.htm
    [8]
    de Groot A, Linotte P, van Veen D, et al. Performance of compact ICU (intensified camera unit) with autogating based on video signal[C]//Electro-Optical and Infrared Systems: Technology and Applications Ⅳ of SPIE, 2007, 6737: 73-82.
    [9]
    Photonis Scientific Detectors. Quantum Efficiency of Photo-cades [EB/OL]. [2019-12][2024-01-05]. https://cmsimg01.71360.com/data/u22435/file/2020031717232210132.pdf.
    [10]
    中智科仪. 微通道板MCP简介[EB/OL]. [2021-01-27][2024-02-12]. http://www.cis-systems.com/newsinfo/1121333.html.

    Intelligent Scientific Systems. Introduction of MCP[EB/OL]. [2021-01-27] [2024-02-12]. http://www.cis-systems.com/newsinfo/1121333.html.
    [11]
    杨武丽, 来悦颖, 张晓辉, 等. 微光像增强器常用荧光粉性能研究[J]. 应用光学, 2022, 43(6): 1207-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202206023.htm

    YANG Wuli, LAI Yueyin, ZHANG Xiaohui, et al. Research on properties of commonly-used phosphors for low-level-light image intensifiers[J]. Journal of Applied Optics, 2022, 43(6): 1207-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202206023.htm
    [12]
    Beam Imaging Solutions. Products 2022[EB/OL]. [2022-01] [2024-01-20]. https://beamimaging.com/wp-content/uploads/2023/02/catalog-2022-new.pdf.
    [13]
    崔志刚. ICCD光锥耦合技术研究及性能分析[D]. 北京: 北京理工大学, 2008.

    CUI Zhigang. Research and Performance Analysis of Optical Cone Coupling Technology of ICCD[D]. Beijing: Beijing Institute of Technology, 2008.
    [14]
    刘德森, 殷宗敏, 祝颂来, 等. 纤维光学[M]. 北京: 科学出版社, 1987.

    LIU Desen, YIN Zongmin, ZHU Songlai, et al. Fiber Optics[M]. Beijing: Science Press, 1987.
    [15]
    王耀祥, 田维坚, 章兴龙, 等. 纤维光锥有效透过率的理论分析[J]. 光子学报, 2005, 34(4): 529-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB20050400C.htm

    WANG Yaoxiang, TIAN Weijian, ZHANG Xinglong, et al. Theoretical analysis of the effective transmission about fiber taper[J]. Acta Photonica Sinica, 2005, 34(4): 529-533. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB20050400C.htm
    [16]
    王耀祥, 田维坚, 黄琨, 等. 光锥与CCD耦合效率的理论分析[J]. 光子学报, 2004, 33(3): 318. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200403016.htm

    WANG Yaoxiang, TIAN Weijian, HUANG Kun, et al. Theoretical analysis of the coupling efficient between fiber taper and CCD[J]. Acta Photonica Sinica, 2004, 33(3): 318. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200403016.htm
    [17]
    李晓峰, 李莉, 邓华斌, 等. 光纤面板及光锥传像特性研究(英文)[J]. 红外技术, 2014, 36(8): 617-623. http://hwjs.nvir.cn/cn/article/id/hwjs201408003

    LI Xiaofeng, LI Li, DENG Huabin, et al. Study on light transmission characteristics of fiber optic faceplate and fiber optic taper[J]. Infrared Technology, 2014, 36(8): 617-623. http://hwjs.nvir.cn/cn/article/id/hwjs201408003
    [18]
    辛福学. ICCD的光纤耦合技术[J]. 红外与激光工程, 2001(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507033.htm

    XIN Fuxue. Optical fiber coupling technique of ICCD[J]. Infrared and Laser Engineering, 2001(3): 210-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201507033.htm
    [19]
    Smith A W. Textured fiber optic coupled image intensified camera: U. S. Patent 9, 201, 193[P]. 2015-12-1.
    [20]
    DU Y, HUANG Y, JIAO P, et al. Coupling resolution of tapered optical fiber array and CCD[C]//Ninth Symposium on Novel Photoelectronic Detection Technology and Applications of SPIE, 2023, 12617: 2002-2008.
    [21]
    何欢. 距离选通ICCD及其控制电路设计与实现[D]. 中国科学院研究生院(西安光学精密机械研究所), 2015.

    HE Huan, Design for a Range-Gated ICCD and Its Control Circuit[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2015.
  • Related Articles

    [1]LIAO Guangfeng, GUAN Zhiwei, CHEN Qiang. An Improved Dual Discriminator Generative Adversarial Network Algorithm for Infrared and Visible Image Fusion[J]. Infrared Technology , 2025, 47(3): 367-375.
    [2]DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470.
    [3]CHEN Haipeng, JIN Weiqi, LI Li, QIU Su, YU Xiangzhi. Study on BRDF Scattering Characteristics of Relay Wall in Non-Line-of-Sight Imaging Based on Time-gated SPAD Array[J]. Infrared Technology , 2024, 46(11): 1225-1234.
    [4]ZHONG Guoli, LIAO Shouyi, YANG Xinjie. Real-Time Infrared Image Generation of Battlefield Environment Based on JRM[J]. Infrared Technology , 2024, 46(2): 183-189.
    [5]SHEN Ji, NA Qiyue, XU Jiandong, CHANG Weijing, ZHANG Wei, JIAN Yunfei. 640×512 Frame Transfer EMCCD Camera Timing Sequence Design[J]. Infrared Technology , 2023, 45(5): 548-552.
    [6]WANG Mingxing, ZHENG Fu, WANG Yanqiu, SUN Zhibin. Time-of-Flight Point Cloud Denoising Method Based on Confidence Level[J]. Infrared Technology , 2022, 44(5): 513-520.
    [7]LIU Zhaoqing, LI Li, DONG Bing, JIN Weiqi. Shack-Hartman Detector Real-time Wavefront Processor Based on FPGA[J]. Infrared Technology , 2021, 43(8): 717-722.
    [8]CHEN Zheng, FU Kuisheng, DING Haishan. Analysis of the Influence of Installation Errors of an Infrared Stabilized Platform on Line-of-sight Angular Velocity[J]. Infrared Technology , 2021, 43(2): 110-115.
    [9]WEI Jiali, QU Huidong, WANG Yongxian, ZHU Junqing, GUAN Yingjun. Research Review of 3D Cameras Based on Time-of-Flight Method[J]. Infrared Technology , 2021, 43(1): 60-67.
    [10]HUANG Minshuang, GUAN Zaihui, JIANG Bo. Pulse Laser Ranging Using Sinusoidal Amplitude Time Conversion[J]. Infrared Technology , 2020, 42(5): 483-487.
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article views (91) PDF downloads (46) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return