ZHAO Wenli, LI Haolan, SUN Hao, HUANG Wei, LI Renzhi, HUAN Jian, CHEN Jun, ZHANG Yingxu, XU Ruiju. Overview of Micro-Rotary Stirling Cryocoolers for HOT IR detectors[J]. Infrared Technology , 2023, 45(2): 195-201.
Citation: ZHAO Wenli, LI Haolan, SUN Hao, HUANG Wei, LI Renzhi, HUAN Jian, CHEN Jun, ZHANG Yingxu, XU Ruiju. Overview of Micro-Rotary Stirling Cryocoolers for HOT IR detectors[J]. Infrared Technology , 2023, 45(2): 195-201.

Overview of Micro-Rotary Stirling Cryocoolers for HOT IR detectors

More Information
  • Received Date: November 01, 2021
  • Revised Date: December 16, 2021
  • With the improvement and promotion of the Mercury Cadmium Telluride (MCT) material preparation process, the dark current of the FPA is suppressed to a certain extent, and an increase in the operating temperature of IR detectors has become a development trend. The development of high-operating-temperature IR detectors promotes the development of micro-Stirling cryocoolers to reduce the size, weight, power consumption, and cost, and promote their performance. The SWaP3 design concept of Stirling cryocoolers for HOT IR detectors is presented. Design techniques such as thin-walled tube short cold fingers, high-efficiency small-size controllers, comprehensive thermal management, reliability prediction, and the recent domestic and foreign development status of Stirling cryocoolers for HOT IR detectors are summarized.
  • [1]
    CHEN Xiaoping, SUN Hao, NIE Xiliang, et al. Overview of micro-miniature stirling cryocoolers for high temperature applications[C]// International Cryocooler Conference (ICC19), 2016: 115-120.
    [2]
    孙皓, 陈晓屏, 乔勇. 小型斯特林制冷机的航空应用与发展趋势[J]. 红外技术, 2015, 37(11): 906-910. http://hwjs.nvir.cn/article/id/hwjs201511002

    SUN Hao, CHEN Xiaoping, QIAO Yong. A review of micro stirling cooler for aero[J]. Infrared Technology, 2015, 37(11): 906-910. http://hwjs.nvir.cn/article/id/hwjs201511002
    [3]
    习中立, 陈军, 陈晓屏, 等. HOT器件用自由活塞斯特林制冷机研究进展[J]. 真空与低温, 2018, 24(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201803003.htm

    XI Zhongli, CHEN Jun, CHEN Xiaoping, et al. Overview of free piston stirling cryocoolers for HOT detectors[J]. Vacuum and Cryogenics, 2018, 24(3): 151-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW201803003.htm
    [4]
    王忆锋, 刘萍. 论高工作温度碲镉汞红外探测器(下) [J]. 红外, 2019, 35(9): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201410002.htm

    WANG Yifeng, LIU Ping. On the high operating temperature mercury cadmium telluride infrared detector[J]. Infrared, 2019, 35(9): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201410002.htm
    [5]
    王忆锋, 刘萍. 论高工作温度碲镉汞红外探测器_上_王忆锋[J]. 红外, 2019, 35(9): 1-8.

    WANG Yifeng, LIU Ping. On the high operating temperature mercury cadmium telluride infrared detector[J]. Infrared, 2019, 35(9): 1-8.
    [6]
    Riabzev S V, Radchenko D, Raf D, et al. Ricor's new development of HOT cryocoolers: compact cost-effective linear model[C] //Proc of SPIE on Infrared Technology and Applications XLV, 2019: 11002: DOI: 10.1117/12.2520842.
    [7]
    Nussberger M, Zehner S, Withopf A, et al. Update on AIM HOT cooler developments[C]//Proc. SPIE on Infrared Technology and Applications XLV, 2019: 11002: DOI: 10.1117/12.2520488.
    [8]
    孙皓, 陈晓屏. HOT微型斯特林制冷机技术分析[C] //第三届新型光电探测技术及其应用研讨会会议论文集, 2016: 115-119.

    SUN Hao, CHEN Xiaoping. Analysis of miniature Stirling cooler for high operating temperature application[C] //Proceedings of the 3rd Symposium on Novel Photoelectronic Detection Technology and Application, 2016: 115-119.
    [9]
    Filis A, Bar haim Z, Havatzelet T, et al. Ricor's rotary cryocoolers development and optimization for HOT IR detectors [C] //Proc. Of SPIE Infrared Technology and Applications XXXVIII, 2012: 8353: DOI: 10.1117/12.923835.
    [10]
    Amiram katz Victor-Segal, Avishai-Filis. RICOR's cryocoolers development and optimization for HOT IR detectors[C]// Proc. of SPIE on Infrared Technology and Applications XL, 2014, 9070: DOI: 10.1117/12.2050317.
    [11]
    David O B, Carmiel M, Segal V, et al. Ricor's advanced rotary cryocooler for HOT IR detectors[C]//Proc. Of SPIE on Infrared Technology and Applications XLV, 2019, 11002: DOI: 10.1117/12.2517715
    [12]
    Nachman I, Riabzev S, Filis A, et al. Advanced Ricor cryocoolers for high-end IR missile warning systems and ruggedized platforms[C] // Proc. of SPIE on Infrared Technology and Applications XLI., 2015, 9451: DOI: 10.1117/12.2176019.
    [13]
    Jean Yves Martin, Jean Marc Cauquil, Tonny Benschop, et al. Thales cryogenics rotary cryocoolers for HOT applications[C] //Proc. of SPIE on Infrared Technology and Applications XXXVIII, 2012, 8353: DOI: 10.1117/12.918587.
    [14]
    Pundak N, Porat Z, Barak M, et al. Field reliability of Ricor microcoolers [C]// Proc. Of SPIE on Infrared Technology and Applications XXXV, 2009, 7298: DOI: 10.1117/12.816262.
    [15]
    Zvi Porat, A Sne-Or, Nachman Pundak, et al. Reliability assessment procedure of cryocoolers[C]// Proc of SPIE on Infrared Technology and Applications XXIV, 1998, 3436: DOI: 10.1117/12.328031.
    [16]
    Groep W, Weijden H, Leeuwen R V, et al. Update on MTTF figures for linear and rotary coolers of Thales cryogenics[C] //Proc. SPIE on Infrared Technology and Applications XXXVIII, 2012, 8353: DOI: 10.1117/12.918245.
    [17]
    Katz A, Bar Haim Z, Riabzev S, et al. Development and optimization progress with RICOR cryocoolers for HOT IR detectors[C] //Proc. of SPIE on Infrared Technology and Applications XLI, 2015: 9451: DOI: 10.1117/12.2176016.
    [18]
    Levin E, Katz A, Haim Z B, et al. RICOR cryocoolers for HOT IR detectors from development to optimization for industrialized production[C] //Proc. of SPIE on Tri-Technology Device Refrigeration (TTDR) Ⅱ. 2017, 10180: DOI: 10.1117/12.2262334.
  • Related Articles

    [1]LUO Yun, CHEN Jun, HUANG Wei, LI Jiapeng, ZHU Zhengrong, HUANG Enhe, HUANG Rong, ZHOU Fanqin, RAO Yongxing, BI Xiang, YANG Jinqing. Micro Linear Stirling Cooler for HOT IR Detectors[J]. Infrared Technology , 2025, 47(4): 517-522.
    [2]ZHAO Wenli, SUN Hao, LI Renzhi, LI Haolan, XU Anbo, HUAN Jian, ZHANG Kai, QIAO Yong. Influence of Temperature Measuring Position at the Cold End on Cryocooler Performance[J]. Infrared Technology , 2024, 46(9): 1087-1091.
    [3]SU Yongqiang. Application of Metal C Ring in Stirling Cryocooler[J]. Infrared Technology , 2022, 44(7): 757-762.
    [4]DENG Wei, SUN Hongsheng, ZHU Yingfeng, XU Dongmei, LI Ran, HUANG Yibin. Development Status of the Flexible Thermal Link Coupling Between Cryocooler and Long Linear Infrared Detector[J]. Infrared Technology , 2020, 42(1): 10-18.
    [5]DENG Gongrong, ZHAO Peng, YUAN Jun, XIN Sishu, GONG Xiaoxia, LI Bingzhe, MA Qi, YANG Wenyun, PU Chaoguang. Status of Sb-based HOT Infrared Detectors[J]. Infrared Technology , 2017, 39(9): 780-784.
    [6]WANG Tiantai, WANG Libao, ZHANG Manchun, SUN Chao, DENG Peng, CHENG Cheng, YU Bo, PAN Qi. Design and Performance of Guide Infrared's RS058 Rotary Stirling Cryocooler[J]. Infrared Technology , 2016, 38(11): 990-995.
    [7]Development of Cyocoolers for Missile[J]. Infrared Technology , 2010, 32(9): 549-552. DOI: 10.3969/j.issn.1001-8891.2010.09.013
    [8]Development of the Tactical Linear Stirling Cryocooler in USA[J]. Infrared Technology , 2009, 31(7): 420-423. DOI: 10.3969/j.issn.1001-8891.2009.07.012
    [9]HU Bai-nan, CHEN Xiao-Ping, XIA Ming. The Development of Low-Power Stirling Cryocooler[J]. Infrared Technology , 2006, 28(12): 730-733. DOI: 10.3969/j.issn.1001-8891.2006.12.012
    [10]XIA Ming, CHEN Xiao-ping, CHEN Jun, ZOU Ding-li. Experimental Study of Monobloc Stirling Cryocooler[J]. Infrared Technology , 2006, 28(6): 369-371. DOI: 10.3969/j.issn.1001-8891.2006.06.015
  • Cited by

    Periodical cited type(3)

    1. 耿利红,饶启超,段燕波,刘湘德,迟国春. HOT器件用旋转式斯特林制冷机数值模拟及实验研究. 真空与低温. 2025(02): 239-247 .
    2. 张利明,李艳红,冯志攀,宋淑芳,付志凯,王冠,张磊. 高工作温度碲镉汞红外探测器杜瓦结构研究. 激光与红外. 2024(07): 1081-1085 .
    3. 饶启超,耿利红,刘志勇,李建国. 斯特林制冷机热真空环境散热设计与分析. 红外. 2024(11): 28-33 .

    Other cited types(0)

Catalog

    Article views (354) PDF downloads (157) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return