Citation: | YANG Peilong, CHEN Shuyue, YANG Shangyu, WANG Jiahong. Two-Stream Residual Dilation Network Algorithm for Crowd Counting Based on RGB-T Images[J]. Infrared Technology , 2023, 45(11): 1177-1186. |
[1] |
张宇倩, 李国辉, 雷军, 等. FF-CAM: 基于通道注意机制前后端融合的人群计数[J]. 计算机学报, 2021, 44(2): 304-317. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102004.htm
ZHANG Yuqian, LI Guohui, LEI Jun, et al. FF-CAM: crowd counting based on front-end and back-end fusion of channel attention mechanism [J]. Journal of Computer Science, 2021, 44(2): 304-317. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102004.htm
|
[2] |
YANG Z, WEN J, HUANG K. A method of pedestrian flow monitoring based on received signal strength[J]. EURASIP Journal on Wireless Communications and Networking, 2022, 2022(1): 1-17. DOI: 10.1186/s13638-021-02080-5
|
[3] |
王曲, 赵炜琪, 罗海勇, 等. 人群行为分析研究综述[J]. 计算机辅助设计与图形学学报, 2018, 30(12): 2353-2365. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201812018.htm
WANG Qu, ZHAO Weiqi, LUO Haiyong, et al. Review of research on crowd behavior analysis[J]. Journal of Computer-Aided Design and Graphics, 2018, 30(12): 2353-2365. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201812018.htm
|
[4] |
蒋一, 侯丽萍, 张强. 基于改进空时双流网络的红外行人动作识别研究[J]. 红外技术, 2021, 43(9): 852-860. http://hwjs.nvir.cn/article/id/f44f08d7-9ff9-413b-938d-de049d8dc5a2
JIANG Yi, HOU Liping, ZHANG Qiang. Research on infrared pedestrian action recognition based on improved space-time dual-stream network [J]. Infrared Technology, 2021, 43(9): 852-860. http://hwjs.nvir.cn/article/id/f44f08d7-9ff9-413b-938d-de049d8dc5a2
|
[5] |
赵才荣, 齐鼎, 窦曙光, 等. 智能视频监控关键技术: 行人再识别研究综述[J]. 中国科学: 信息科学, 2021, 51(12): 1979-2015. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202112002.htm
ZHAO Cairong, QI Ding, DOU Shuguang, et al. Key technologies for intelligent video surveillance: A review of pedestrian re-identification research [J]. Science in China: Information Science, 2021, 51(12): 1979-2015. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX202112002.htm
|
[6] |
Enzweiler M, Gavrila D M. Monocular pedestrian detection: Survey and experiments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(12): 2179-2195.
|
[7] |
LI M, ZHANG Z, HUANG K, et al. Estimating the number of people in crowded scenes by mid based foreground segmentation and head-shoulder detection[C]//2008 19th International Conference on Pattern Recognition, 2008: 1-4.
|
[8] |
CHEN K, Loy C C, GONG S, et al. Feature mining for localised crowd counting[C]//BMVC, 2012: 3-12.
|
[9] |
Pham V Q, Kozakaya T, Yamaguchi O, et al. Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 3253-3261.
|
[10] |
PAN S, ZHAO Y, SU F, et al. SANet++: enhanced scale aggregation with densely connected feature fusion for crowd counting[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 1980-1984.
|
[11] |
吴奇元, 王晓东, 章联军, 等. 融合注意力机制与上下文密度图的人群计数网络[J]. 计算机工程, 2022, 48(5): 235-241, 250. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202205031.htm
WU Qiyuan, WANG Xiaodong, ZHANG Lianjun, et al. Crowd counting network integrating attention mechanism and context density map [J]. Computer Engineering, 2022, 48(5): 235-241, 250. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC202205031.htm
|
[12] |
TANG H, WANG Y, CHAU L-P. TAFNet: a three-stream adaptive fusion network for RGB-T crowd counting[J/OL]. arXiv preprint arXiv: 2202.08517, 2022. https://doi.org/10.48550/arXiv.2202.08517.
|
[13] |
LIU L, CHEN J, WU H, et al. Cross-modal collaborative representation learning and a large-scale rgbt benchmark for crowd counting[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4823-4833.
|
[14] |
PENG T, LI Q, ZHU P. RGB-T crowd counting from drone: a benchmark and MMCCN network[C]//Computer Vision – ACCV 2020, 2021: 497-513.
|
[15] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations (ICLR), 2014: 1-14.
|
[16] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[17] |
DAI F, LIU H, MA Y, et al. Dense scale network for crowd counting[C]//Proceedings of the 2021 International Conference on Multimedia Retrieval, 2021: 64-72.
|
[18] |
LI Y, ZHANG X, CHEN D. Csrnet: Dilated convolutional neural networks for understanding the highly congested scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 1091-1100.
|
[19] |
Woo S, Park J, Lee J Y, et al. Cbam: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
|
[20] |
ZHANG J, FAN D P, DAI Y, et al. UC-Net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8582-8591.
|
[21] |
PANG Y, ZHANG L, ZHAO X, et al. Hierarchical dynamic filtering network for rgb-d salient object detection[C]//European Conference on Computer Vision, 2020: 235-252.
|
[22] |
ZHANG Y, ZHOU D, CHEN S, et al. Single-image crowd counting via multi-column convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 589-597.
|
[23] |
CAO X, WANG Z, ZHAO Y, et al. Scale aggregation network for accurate and efficient crowd counting[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 734-750.
|
[24] |
FAN D P, ZHAI Y, Borji A, et al. BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network[C]//European Conference on Computer Vision, 2020: 275-292.
|
[25] |
ZHANG Q, CHAN A B. Wide-area crowd counting via ground-plane density maps and multi-view fusion cnns[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 8297-8306.
|
[26] |
MA Z, WEI X, HONG X, et al. Bayesian loss for crowd count estimation with point supervision[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6142-6151.
|
[27] |
ZENG L, XU X, CAI B, et al. Multi-scale convolutional neural networks for crowd counting[C]//IEEE International Conference on Image Processing (ICIP), 2017: 465-469.
|
[28] |
SHEN Z, XU Y, NI B, et al. Crowd counting via adversarial cross-scale consistency pursuit[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 5245-5254.
|