WANG Chuyue, YANG Lifeng, HE Daogang. Modeling and Verification of Ground Point Source for Mid-Wave Infrared Detection[J]. Infrared Technology , 2023, 45(4): 357-363.
Citation: WANG Chuyue, YANG Lifeng, HE Daogang. Modeling and Verification of Ground Point Source for Mid-Wave Infrared Detection[J]. Infrared Technology , 2023, 45(4): 357-363.

Modeling and Verification of Ground Point Source for Mid-Wave Infrared Detection

More Information
  • Received Date: March 25, 2021
  • Revised Date: June 30, 2021
  • The detection of anomalous heat source point targets in a wide range of infrared systems requires a balance between the pixel resolution and temperature sensitivity. Given that the scale of the detector is stable, the existing space-borne infrared payloads have insufficient sensitivity when the amplitude is large and small amplitude when the spatial resolution is high. In response to these problems, in this study, we propose a preliminary plan for detecting heat sources at abnormal points in a large field of view using a time-delay integration (TDI) algorithm to process images. Under certain conditions, the temperature sensitivity requirements for detection can be satisfied and a theoretical width of 217 km × 122 km can be achieved. A set of high-sensitivity infrared imaging experimental systems was built, and testing and simulation-based detection experiments were conducted. The results show that the sensitivity performance of this scheme is approximately 37 mK when a width of 202 km× 114 km is realized, which fulfills the requirements for detecting a large-scale abnormal point heat source. Considering the solar reflectance of the target and background, a pixel resolution of 200 m is used in practical applications, which corresponds to a width of 128 km×102 km.
  • [1]
    李伟克, 殷继艳, 郭赞全, 等. 2019年世界代表性国家和地区森林火灾发送概况分析[J]. 消防科学与技术, 2020, 39(9): 1280-1284. DOI: 10.3969/j.issn.1009-0029.2020.09.026

    LI Weike, YIN Jiyan, GUO Zanquan, et al. Analysis of forest fires in representative countries and regions in the world in 2019[J]. Fire Science and Technology, 2020, 39(9): 1280-1284. DOI: 10.3969/j.issn.1009-0029.2020.09.026
    [2]
    栾婷婷, 王亚坤, 张馨仪. 2008-2018年我国森林火灾事故统计分析[J]. 安全, 2020, 41(10): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ANQU202010010.htm

    LUAN Tingting, WANG Yakun, ZHANG Xinyi. Statistical analysis of forest fire accidents in china from 2008 to 2018[J]. Safety & Security, 2020, 41(10): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ANQU202010010.htm
    [3]
    李文岩. 宽幅航天相机焦面关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    LI Wenyan. Research on the key technology of the focal plane of a wide-format space camera [D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020.
    [4]
    刘妍妍. 大视场长焦平面TDI CCD拼接相机最优成像技术研究[D]. 长春: 吉林大学, 2016.

    LIU Yanyan. Research on Optimal Imaging Technology of Large Field of View and Long Focal Plane TDI CCD Stitching Camera[D]. Changchun: Jilin University, 2016.
    [5]
    胡芬, 金淑英. 高分辨率光学遥感卫星宽幅成像技术发展浅析[J]. 地理信息世界, 2017, 24(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201705010.htm

    HU Fen, JIN Shuying. Analysis on the development of high-resolution optical remote sensing satellite wide-format imaging technology[J]. Geographic Information World, 2017, 24(5): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CHRK201705010.htm
    [6]
    吕旺, 董瑶海, 沈毅力, 等. 静止气象卫星轨道运动的成像补偿研究[J]. 遥感学报, 2019, 23(2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902001.htm

    LYU Wang, DONG Yaohai, SHEN Yili, et al. Research on imaging compensation of orbital motion of stationary meteorological satellites[J]. Journal of Remote Sensing, 2019, 23(2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201902001.htm
    [7]
    覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202005002.htm

    QIN Xianlin, LI Xiaotong, LIU Shuchao, et al. Forest fire early warning and monitoring techniques using satellite remote sensing in China[J]. Journal of Remote Sensing, 2020(5): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202005002.htm
    [8]
    张博铭, 苏晓峰, 崔坤, 等. 开窗高帧频下红外面阵数字TDI实现方式研究[J]. 激光与红外, 2016, 46(10): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201610017.htm

    ZHANG Boming, SU Xiaofeng, CUI Kun, et al. Research on digital TDI implementation way based on windowing and high frame rate infrared FPA[J]. Laser & Infrared, 2016, 46(10): 1250-1255. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201610017.htm
    [9]
    NIE Kaiming, YAO Suying. A 128-stage analog accumulator for CMOS TDI image sensor[J]. IEEE Trans. CIR-CUI-TS and Systems, 2014, 61(7): 1952-1961.
    [10]
    Lepage G, Bogaerts Jan, Meynants Guy. Time-delay-integration architectures in CMOS image sensors[J]. IEEE Trans. Electron Device-S, 2009, 56(11): 2524-2533.
    [11]
    周世椿. 高级红外光电工程导论[M]. 北京: 科学出版社, 2014.

    ZHOU Shichun. Introduction to Advanced Infrared Optoelectronic Engineering[M]. Beijing: Science Press, 2014.
    [12]
    彭焕良. 红外焦平面热成像技术的发展[J]. 激光与红外, 2006, 36(S1) : 776-780. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW2006S1010.htm

    PENG Huanliang. The development of the IRFPA thermal imaging technology[J]. Laser & Infrared, 2006, 36(S1): 776-780. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW2006S1010.htm
    [13]
    董海, 罗冠泰, 余明权, 等. 利用IRFPA的开窗功能实现成像系统的双帧频双画幅输出[J]. 激光与红外, 2011, 41(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201103009.htm

    DONG Hai, LUO Guantai, YU Mingquan, et al. Double frame rate and double picture implementation in IRFPA with region-of-interest capability imaging system[J]. Laser & Infrared, 2011, 41(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201103009.htm
  • Related Articles

    [1]QU Fan, FU Jianyu, HOU Ying, LU Yihong, LI Zhenfeng, CHEN Dapeng. Optimizing Diode Structure in Uncooled Infrared Focal Plane Array[J]. Infrared Technology , 2023, 45(3): 308-314.
    [2]YUE Lizhu, LU Zhengjie, WANG Xiaofeng, YU Wen, YANG Fan, ZHANG Cheng. Test Method of Spatial Noise Equivalent Temperature Difference[J]. Infrared Technology , 2016, 38(6): 519-523.
    [3]LAI Fu-wen, ZHANG Zhi-jie, ZHOU Han-chang, LEI Tie-xin. Measurement and Analysis of Noise Equivalent Temperature Difference Based on High Temperature Background[J]. Infrared Technology , 2015, (4): 311-314.
    [4]WANG Yi-feng, HOU Hui, FENG Xue-yan. Development of Microscan Techniques in Infrared Focal Plane Array[J]. Infrared Technology , 2013, (12): 751-758.
    [5]LV Zhao-shun, WU Hant-ping, ZHOU Wei, HU Da-Jun. Research on the Distance of Near Ground Ultraviolet Free Optical Communication and the Influence of Factors[J]. Infrared Technology , 2011, 33(10): 588-592. DOI: 10.3969/j.issn.1001-8891.2011.10.007
    [6]XIE Bao-rong, FU Yu-tian, ZHANG Ying-qing. Design of the Acquisition System with Low Noise Based on 320 × 256 Long Wavelength Infrared Detector[J]. Infrared Technology , 2010, 32(4): 191-194,203. DOI: 10.3969/j.issn.1001-8891.2010.04.002
    [7]Using The Three-dimension Noise Model to Test and Analyze the Scanning Thermal Imaging Systems[J]. Infrared Technology , 2009, 31(8): 453-457. DOI: 10.3969/j.issn.1001-8891.2009.08.005
    [8]CHEN Bo-yang, CHEN Fan-sheng, CHEN Gui-lin, SUN Sheng-li. A New Method of Improving Spatial Resolution of Linear Matrix Scanner by Over Sample[J]. Infrared Technology , 2009, 31(7): 395-398,402. DOI: 10.3969/j.issn.1001-8891.2009.07.006
    [9]FAN Hong-bo, TANG Lin, PAN Shun-chen. Research on Developing Virtual IR Imager by MTF of Real System[J]. Infrared Technology , 2007, 29(2): 99-101. DOI: 10.3969/j.issn.1001-8891.2007.02.010
    [10]Technique to Improve Resolution and Imagery of a Given Imager--Microscannig[J]. Infrared Technology , 2001, 23(4): 15-17,21. DOI: 10.3969/j.issn.1001-8891.2001.04.005

Catalog

    Article views (144) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return