Citation: | ZHANG Ni, CHENG Yaojin, ZHU Yufeng, YANG Kaili, SUN Chao, LI Pengbo, HAO Ziheng, QIU Hongjin, YAN Cheng, GAO Yuting. Formulation and Application Technology of Organic Membrane Solution forPreparation of MCP Components[J]. Infrared Technology , 2024, 46(7): 838-842. |
Micro-channel plates (MCPs) feature millions of through-holes. Preparing an ion barrier film (IBF) on the input surface of MCP components requires a continuous and dense organic film as a temporary carrier. Therefore, organic membranes are crucial in the preparation of IBF-MCPs. To meet the demand for mass production of IBF-MCP components, improving the production efficiency and qualification rate of organic films is essential. This study analyzed methods to enhance the yield of organic film production, resulting in a 30 percentage point increase in yield. This improvement is significant for boosting the efficiency and success rate of MCP component preparation. Additionally, the technology for preparing organic membrane solutions for MCP components is vital in advancing the development of third-generation highly reliable image tubes.
[1] |
向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006: 270-275.
XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Devices[M]. Beijing: National Defense Industry Press, 2006: 270-275.
|
[2] |
闫金良, 赵银女, 朱长纯. 无碳污染微通道板电子透射膜[J]. 电子学报, 2000, 28(8): 100-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200008029.htm
YAN Jinliang, ZHAO Yinnv, ZHU Changchun. Electron transmission film at the input of MCP with no carbon contamination[J]. Acta Electronica Sinica, 2000, 28(8): 100-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200008029.htm
|
[3] |
何振华. 硝棉有机膜的配方及工艺[J]. 应用光学, 1992, 13(3): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX199203022.htm
HE Zhenhua. Formulation and technology of nitrocotton organic film[J]. Applied Optics, 1992, 13(3): 58-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX199203022.htm
|
[4] |
黄小锐, 罗庆平. 含氮量, 温度, 有机溶剂对硝化纤维素溶液特性粘度的影响[J]. 西南科技大学学报, 2018, 33(4): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX202302002.htm
HUANG Xiaorui, LUO Qingping. Effects of nitrogen content, temperature and organic solvent on intrinsic viscosity of nitrocellulose[J]. Journal of Southwest University of Science and Technology, 2018, 33(4): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX202302002.htm
|
[5] |
任玉立, 陈少镇. 硝化纤维素浓溶液体系的溶解性与表观粘度[J]. 兵工学报, 1985, 2(1): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO198501008.htm
REN Yuli, CHEN Shaozhen. Solubility and apparent viscosity of nc concentrate solution system[J]. Acta Armamentarii, 1985, 2(1): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO198501008.htm
|
[6] |
张云华, 王飞俊, 王文俊, 等. 硝化体系及温度对硝化棉含氮量均匀性的影响[J]. 兵工学报, 2014, 35(11): 1750-1755. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201411004.htm
ZHANG Yunhua, WANG Feijun, WANG Wenjun, et al. Effect of nitration system and temperature on nitration uniformity of nitrocellulose fibers[J]. Acta Armamentarii, 2014, 35(11): 1750-1755. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201411004.htm
|
[7] |
曾朝霞. 改性水性硝化纤维素乳液研究[J]. 涂料工业, 2007, 37(2): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TLGY200702010.htm
ZENG Zhaoxia. Study on modification of waterborne nitrocellulose emulsion[J]. Pant & Coatings Ndustry, 2007, 37(2): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TLGY200702010.htm
|
[8] |
夏敏, 罗运军, 华毅龙. 纳米硝化纤维素的制备及性能表征[J]. 含能材料, 2012, 20(2): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201202010.htm
XIA Min, LUO Yunjun, HUA Yilong, et al. Preparation and characterization of nanometer nitrocellulose[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201202010.htm
|
[9] |
王文俊, 左洋, 李永红, 等. 精制棉与硝化工艺对硝化棉含氮量及其分布均匀性的影响[J]. 兵工学报, 2010, 31(10): 1363-1371. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201010015.htm
WANG Wenjun, ZUO Yang, LI Yonghong, et al. Effect of cotton linter and nitrification conditions on nitrogen content and its distribution uniformity of nitrocellulose[J]. Acta Armamentarii, 2010, 31(10): 1363-1371. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201010015.htm
|
[10] |
Kamide K, Okada T, Terakawa T, et al. Characterization of cellulose-nitrate by thin-layer chromatography[J]. Polymer Journal, 1978, 10(5): 547-556. DOI: 10.1295/polymj.10.547
|
[11] |
Clark D, Stephenson P, Heatley F. Partial degrees of substitutionin cellulose nitrates determined by means of C-13 magnetic-resonancestudies [J]. Polymer, 1981, 22(8): 1112-1117. DOI: 10.1016/0032-3861(81)90301-3
|
[1] | XIAO Nachuan, SUN Tuo, HU Liyun, ZHAO Yongquan, WANG Shuangbao, XU Zhimou, ZHANG Xueming. Design of Compact Athermalized Long-Wave Infrared Lens Set with Large Field of View[J]. Infrared Technology , 2024, 46(1): 20-26. |
[2] | FENG Lijun, LI Xunniu, CHEN Jie, ZHOU Lingling, DONG Jiangtao, SUN Aiping, BAO Jianan. Design of Long-wavelength Infrared Athermalization Lens with Large Relative Aperture for Large-array Detectors[J]. Infrared Technology , 2022, 44(10): 1066-1072. |
[3] | CHEN Xiao. Athermalization of Infrared Zoom Optical System with Large Relative Aperture[J]. Infrared Technology , 2021, 43(12): 1183-1187. |
[4] | HE Xiangqing, LIAO Xiaojun, DUAN Yuan, ZHANG Haoye. Common Aperture and Athermalization Design of Compact Laser/Infrared Optical System[J]. Infrared Technology , 2020, 42(5): 461-467. |
[5] | YANG Liangliang, SHEN Fahua, LIU Chenglin, TONG Qiaoying. Athermal Design of Infrared Dual-band Optical System with Double-layer Diffractive Optical Elements[J]. Infrared Technology , 2019, 41(8): 699-704. |
[6] | Design of Long-wavelength Infrared Athermalization Lens for Large-array Detector[J]. Infrared Technology , 2018, 40(11): 1061-1064. |
[7] | JIANG Bo, WU Yue-hao, DAI Shi-xun, NIE Qiu-hua, MU Rui, ZHANG Qin-yuan. Design of a Compact Dual-band Athermalized Infrared System[J]. Infrared Technology , 2015, (12): 999-1004. |
[8] | LV Yin-huan, LEI Cun-dong, CUI Wei-xin. Design and Realization of Athermalizing Optical System for Long-wave Infrared Horizon Sensor[J]. Infrared Technology , 2011, 33(11): 651-654,658. DOI: 10.3969/j.issn.1001-8891.2011.11.007 |
[9] | CUI Li, ZHAO Xin-liang, LITong-hai, TIAN Hai-xia, WU Hai-qing. Athermalization of Uncooled Infrared Optical System Without Focusing Mechanism[J]. Infrared Technology , 2010, 32(4): 187-190. DOI: 10.3969/j.issn.1001-8891.2010.04.001 |
[10] | BAI Yun, YANG Jian-feng, MA Xiao-long, XUE Bin, RUAN Ping, TIAN Hai-xia, WANG Hong-wei, LIANG Shi-tong, LI Xiang-juan. Athermalization of Long-wavelength Infrared Optical System[J]. Infrared Technology , 2008, 30(10): 583-585. DOI: 10.3969/j.issn.1001-8891.2008.10.007 |