GAO Jiansen, LIU Jian. Characteristics of Photovoltage Spectrum on Surfaces of Gallium Nitride Photocathode Film Materials[J]. Infrared Technology , 2022, 44(8): 798-803.
Citation: GAO Jiansen, LIU Jian. Characteristics of Photovoltage Spectrum on Surfaces of Gallium Nitride Photocathode Film Materials[J]. Infrared Technology , 2022, 44(8): 798-803.

Characteristics of Photovoltage Spectrum on Surfaces of Gallium Nitride Photocathode Film Materials

More Information
  • Received Date: September 12, 2021
  • Revised Date: March 17, 2022
  • In this study, we epitaxially grew a multilayer structure of gallium nitride (GaN) photocathode film material on a sapphire substrate and conducted a surface photovoltage test. The effects of doping type, thickness, and doping method on the surface photovoltage of the gallium nitride material were compared and analyzed, and the mechanism of surface photovoltage generation of the multi-layered gallium nitride material was determined. A surface photovoltage test was performed on uniformly doped and delta-doped gallium nitride photocathode thin film materials using sub-band-gap laser. Experimental data shows that better growth quality was achieved using δ-doping than that achieved using uniform doping; however, δ-doping increased the density of defect states in the (Ev+0.65)–(Ev+1.07) eV energy levels.
  • [1]
    WANG X H, ZHANG Y J. Negative electron affinity GaN photocathode with Mg delta-doping[J]. Optik, 2018, 168: 278-281. DOI: 10.1016/j.ijleo.2018.04.112
    [2]
    CUI Z, LI E, KE X, et al. Adsorption of alkali-metal atoms on GaN nanowires photocathode[J]. Applied Surface Science, 2017, 423: 829-835. DOI: 10.1016/j.apsusc.2017.06.233
    [3]
    XIA S H, LIU L, DIAO Y, et al. Research on quantum efficiency and photoemission characteristics of exponential-doping GaN nanowire photocathode[J]. Journal of Materials Science, 2017, 52(21): 12795-12805. DOI: 10.1007/s10853-017-1394-x
    [4]
    王晓晖. 纤锌矿结构GaN(0001)面的光电发射性能研究[D]. 南京: 南京理工大学, 2013.

    WANG X H. Study on Photoemission Properties of Wurtzite GaN(0001) Surface[D]. Nanjing: Nanjing University of Science and Technology, 2013.
    [5]
    李彤, 王怀兵, 刘建平, 等. Delta掺杂制备p-GaN薄膜及其电性能研究[J]. 物理学报, 2007, 56(2): 1036-1040. DOI: 10.3321/j.issn:1000-3290.2007.02.069

    LI T, WANG H B, LIU J P, et al. Preparation of p-GaN thin films by Delta doping and their electrical properties[J]. Acta Physica Sinica, 2007, 56(2): 1036-1040. DOI: 10.3321/j.issn:1000-3290.2007.02.069
    [6]
    邢艳辉, 韩军, 邓军, 等. p型氮化镓不同掺杂方法研究[J]. 功能材料, 2007, 38(7): 1123-1131. DOI: 10.3321/j.issn:1001-9731.2007.07.022

    XING Y H, HAN J, DENG J, et al. Study on different doping methods of P-type gallium nitride[J]. Functional Materials, 2007, 38(7): 1123-1131. DOI: 10.3321/j.issn:1001-9731.2007.07.022
    [7]
    王凯, 邢艳辉, 韩军, 等. 低源流量Delta掺杂p型GaN外延薄膜的研究[J]. 半导体光电, 2016, 37(2): 229-231. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201602018.htm

    WANG K, XING Y H, HAN J, et al. Study on delta-doped P-type GaN epitaxial films with low source flow[J]. Semiconductor Optoelectronics, 2016, 37(2): 229-231. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201602018.htm
    [8]
    LIU Q, CHEN C, Ruda H. Surface photovoltage in undoped semi-insulating GaAs[J]. Journal of Applied Physics, 1993, 74(12): 7492-7496. DOI: 10.1063/1.354973
    [9]
    Kronik L, Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications[J]. Surface Science Reports, 1999, 37(1-5): 1-206. DOI: 10.1016/S0167-5729(99)00002-3
    [10]
    Olafsson H Ö, Gudmundsson J T, Svavarsson H G, et al. Hydrogen passivation of AlxGa1−xAs/GaAs studied by surface photovoltage spectroscopy[J]. Physica B: Condensed Matter, 1999, 273: 689-692.
    [11]
    Foussekis M, Ferguson J D, Baski A A, et al. Role of the surface in the electrical and optical properties of GaN[J]. Physica B Condensed Matter, 2009, 404(23-24): 4892-4895. DOI: 10.1016/j.physb.2009.08.230
    [12]
    赵德刚, 徐大鹏. 立方相pn结GaN的光伏效应[C]//全国固体薄膜学术会议, 2007, 115-117.

    ZHAO D G, XU D P. Photovoltaic effect of cubic PN junction GaN[C]//National Conference on Solid Film, 2007: 115-117.
    [13]
    ZHANG Q, WANG D, WEI X, et al. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure[J]. Thin Solid Films, 2005, 491: 242-248. DOI: 10.1016/j.tsf.2005.06.017
    [14]
    陈亮. 基于光电压谱的GaAs光电阴极评估技术研究[D]. 南京: 南京理工大学, 2012.

    CHEN L. Research on Assessment Technology of Photovoltage Spectroscopy for GaAs Photocathodes[D]. Nanjing: Nanjing University of Science and Technology, 2012.
    [15]
    Sharma T K, Porwal S, Kumar R, et al. Absorption edge determination of thick GaAs wafers using surface photovoltage spectroscopy[J]. Review of Scientific Instruments, 2002, 73(4): 1835-1840. DOI: 10.1063/1.1449461
    [16]
    Jana D, Porwal S, Sharma T K, et al. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers[J]. Review of Scientific Instruments, 2014, 85(4): 1-21.
    [17]
    蒋联娇, 符斯列, 秦盈星, 等. N空位, Ga空位对GaN: Mn体系电磁性质和光学性质影响的第一性原理研究[J]. 功能材料, 2016, 47(12): 12139-12146. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201612023.htm

    JIANG L J, FU S L, QIN Y X, et al. First-principles study of the effect of GaN: Mn with N vacancy and Ga vacancy on electronic structures, ferromagnetism and optical properties[J]. Journal of Functional Materials, 2016, 47(12): 12139-12146. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201612023.htm
    [18]
    Schwarz R, Slobodin D, Wagner S. Differential surface photovoltage measurement of minority‐carrier diffusion length in thin films[J]. Applied Physics Letters, 1985, 47(7): 740-742. DOI: 10.1063/1.96023
    [19]
    Chow T P, Ghezzo. SiC power devices. In III-Nitride, SiC, and diamond materials for electronic devices[J]. Material Research Society Symposium Proceedings, Gaskill D K, Brandt C D, Nemanich R J Eds, Pittsburgh, PA. 1996, 423: 69-73.
    [20]
    Park H Y, Jeon K N, Kim K J. Mg Delta-doping effect on a deep hole center related to electrical activation of a p-type GaN thin film[J]. Transactions on Electrical & Electronic Materials, 2010, 11(1): 37-41.
    [21]
    Liliental W Z, Benamara M, Swider W, et al. Ordering in bulk GaN: Mg samples: defects caused by Mg doping[J]. Physica B Condensed Matter, 1999, 273-274(3): 124-129.
  • Related Articles

    [1]DAI Yueming, YANG Lufeng, TONG Xiongmin. Real-time Section State Verification Method of Energy Management System Low Voltage Equipment Based on Infrared Image and Deep Learning[J]. Infrared Technology , 2024, 46(12): 1464-1470.
    [2]CHEN Qiuyan, ZHANG Xinyan, HE Min, TIAN Yichun, LIU Ning, GUO Rui, WANG Xiaohui, YOU Siyuan, ZHANG Xiukun. Identification of Pipeline Thermal Image Leakage Based on Deep Learning[J]. Infrared Technology , 2024, 46(5): 522-531.
    [3]DUAN Jin, ZHANG Hao, SONG Jingyuan, LIU Ju. Review of Polarization Image Fusion Based on Deep Learning[J]. Infrared Technology , 2024, 46(2): 119-128.
    [4]FU Tian, DENG Changzheng, HAN Xinyue, GONG Mengqing. Infrared and Visible Image Registration for Power Equipments Based on Deep Learning[J]. Infrared Technology , 2022, 44(9): 936-943.
    [5]ZHANG Yutong, ZHAI Xuping, NIE Hong. Deep Learning Method for Action Recognition Based on Low Resolution Infrared Sensors[J]. Infrared Technology , 2022, 44(3): 286-293.
    [6]ZHONG Rui, YANG Li, DU Yongcheng. The Influence of Deep Transfer Learning Pre-training on Infrared Wake Image Recognition[J]. Infrared Technology , 2021, 43(10): 979-986.
    [7]FAN Peng, FENG Wanxing, ZHOU Ziqiang, ZHAO Chun, ZHOU Sheng, YAO Xiangyu. Application of Deep Learning in Abnormal Insulator Infrared Image Diagnosis[J]. Infrared Technology , 2021, 43(1): 51-55.
    [8]YANG Tao, DAI Jun, WU Zhongjian, JIN Daizhong, ZHOU Guojia. Target Recognition of Infrared Ship Based on Deep Learning[J]. Infrared Technology , 2020, 42(5): 426-433.
    [9]WU Xiao-sheng, SUN Jun-ding. Image Retrieval Based on Improvement Histogram and Spatial Feature[J]. Infrared Technology , 2007, 29(11): 666-669. DOI: 10.3969/j.issn.1001-8891.2007.11.012
    [10]AN Zhi-yong, DU Zhi-Qiang, ZHAO Shan, ZHOU Li-hua. A New Approach for Image Retrieval Based on Color and Spatial Features[J]. Infrared Technology , 2007, 29(6): 361-364. DOI: 10.3969/j.issn.1001-8891.2007.06.013
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return