SHAN Shaoqi, WU Jinmin, WEN Yaxin, LI Biansheng, GUO Xiaoxue, LI Yuming, RUAN Zheng, LI Dandan, WU Zidong. Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination[J]. Infrared Technology , 2021, 43(1): 79-88.
Citation: SHAN Shaoqi, WU Jinmin, WEN Yaxin, LI Biansheng, GUO Xiaoxue, LI Yuming, RUAN Zheng, LI Dandan, WU Zidong. Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination[J]. Infrared Technology , 2021, 43(1): 79-88.

Irradiation Characteristics of Point-shaped Far-Infrared Emission Source and Combination

More Information
  • Received Date: June 23, 2020
  • Revised Date: December 23, 2020
  • In this study, the far-infrared radiation characteristics of three materials and the effects of different metals on far-infrared radiation were explored. The study used the point-shaped far-infrared emission source as a research object to examine the different influencing factors and power density distribution regulation of the point-shaped far-infrared source. Results indicated that the far-infrared sintered material exhibited the highest power density, followed by the ceramic and glass materials. Factors that affected the power density of far-infrared materials were identified as the quality, irradiated area, and metal cover. The power density of the point-shaped far-infrared source increased with temperature, and the wavelength corresponding to the maximum power density was approximately λ=6-10 μm. The power density of the point-shaped far-infrared emission source was distributed in a radial manner. In the range of the vertical distance L=0-3 cm and radius r=0-1 cm, the far-infrared power density attenuation rate was low and was designed accordingly. In addition, a mathematical model of power density E and normal distance L was established. Based on these factors, we designed a far-infrared emitter combination model with a uniform field energy. Results revealed that the field energy of this model was evenly distributed to achieve the desired effect.
  • [1]
    君轩.红外和远红外技术[J].世界橡胶工业, 2009, 36(1): 43-45. DOI: 10.3969/j.issn.1671-8232.2009.01.011

    JUN Xuan. Infrared and far infrared technology[J]. World Rubber Industry, 2009, 36(1): 43-45. DOI: 10.3969/j.issn.1671-8232.2009.01.011
    [2]
    魏忠彩, 孙传祝, 张丽丽, 等.红外干燥技术在果蔬和粮食加工中的应用[J].食品与机械, 2016, 32(1): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201601057.htm

    WEI Zhongcai, SUN Zhuanzhu, ZHANG Lili, et al. Progress of infrared drying technology applied processing of fruits and vegetables and grain[J]. Food and Machinery, 2016, 32(1): 217-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201601057.htm
    [3]
    申彩英, 李峰, 朴在林.香菇远红外连续干燥主要工艺参数的试验研究[J].农机化研究, 2006(9): 132-134. DOI: 10.3969/j.issn.1003-188X.2006.09.043

    SHEN Caiying, LI Feng, PIAO Zailin. Research on the major technical parameters of far infrared dryer formushroom drying[J]. Agricultural Mechanization Research, 2006(9): 132-134. DOI: 10.3969/j.issn.1003-188X.2006.09.043
    [4]
    胡洁.果蔬远红外真空干燥技术研究[D].无锡: 江南大学, 2008.

    HU Jie. Research on Far-Infrared Vacuum Drying of Vegetables And Fruits[D]. Wuxi: Jiangnan university, 2008.
    [5]
    罗剑毅.稻谷的远红外干燥特性和工艺的实验研究[D].杭州: 浙江大学, 2006.

    LUO Jianyi. Study on Drying Characteristic And Technology of Paddy Dried on Far-Infrared[D]. Hangzhou: Zhejiang university, 2006.
    [6]
    李武强, 黄晓鹏, 马嘉伟, 等.响应面法优化桔梗切片远红外干燥工艺[J].林业机械与木工设备, 2019, 47(8): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-LJMG201908012.htm

    LI Wuqiang, HUANG Xiaopeng, MA Jiawei, et al. Optimization of far infrared drying process of platycodongrandiflorum slice by response surface methodology[J]. Forestry Machinery and Woodworking Equipment, 2019, 47(8): 47-51. https://www.cnki.com.cn/Article/CJFDTOTAL-LJMG201908012.htm
    [7]
    刘宗博, 张钟元, 李大婧, 等.双孢菇远红外干燥过程中内部水分的变化规律[J].食品科学, 2016, 37(9): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201609017.htm

    LIU Zongbou, ZHANG Zhongyuan, LI Dajing, et al. Analysis of moisture change during far-infrared drying of agaricus bisporus[J]. Food Science, 2016, 37(9): 82-86. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201609017.htm
    [8]
    XU C, LI Y, YU H. Effect of far-infrared drying on the water state and glass transition temperature in carrots[J]. Journal of Food Engineering, 2014, 136: 42-47. DOI: 10.1016/j.jfoodeng.2014.03.022
    [9]
    Nathakaranakule A, Jaiboon P, Soponronnarit S. Far-infrared radiation assisted drying of longan fruit[J]. Journal of Food Engineering, 2010, 100(4): 662-668. DOI: 10.1016/j.jfoodeng.2010.05.016
    [10]
    GONG Y J, SUI Y, HAN C S, et al. Drying Ginseng Slices Using a Combination of Microwave and Far-Infrared Drying Techniques[J]. Journal of Biosystems Engineering, 2016, 41(1): 34-42. DOI: 10.5307/JBE.2016.41.1.034
    [11]
    GUO S, CHI Y, GUO G. Recent achievements on middle and far-infrared second-order nonlinear optical materials[J]. Coordination Chemistry Reviews, 2017, 335: 44-57. DOI: 10.1016/j.ccr.2016.12.013
    [12]
    LEE S, KIM Y, KANG S. Far-infrared emission of Ti-based oxides[J]. Journal of Molecular Structure, 2011, 987(1-3): 86-90. DOI: 10.1016/j.molstruc.2010.11.063
    [13]
    林少波, 郭小华, 毛海波, 等.竹炭远红外比辐射率测试条件研究[J].浙江林业科技, 2016(3): 28-30. DOI: 10.3969/j.issn.1001-3776.2016.03.006

    LIN Shaobo, GUO Xiaohua, MAO Haibo, et al. Determination on far-infrared radiance of bamboo carbon under different condition[J]. Zhejiang Forestry Science and Technology, 2016(3): 28-30. DOI: 10.3969/j.issn.1001-3776.2016.03.006
    [14]
    修大鹏, 许建华, 周吉学, 等.远红外辐射黑瓷板研制及其性能研究[J].红外与激光工程, 2018, 47(11): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811024.htm

    XIU Dapeng, XU Jianhua, ZHOU Jixue, et al. Research on development and its performance of far-infraredradiation black porcelain plate[J]. Infrared and Laser Engineering, 2018, 47(11): 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201811024.htm
    [15]
    YAO Longyang, FAN Liuping, DUAN Zhenhua. Effect of different pretreatments followed by hot-air and far-infrared drying on the bioactive compounds, physicochemical property and microstructure of mango slices[J]. Food Chemistry, 2020, 305: 125477. DOI: 10.1016/j.foodchem.2019.125477
    [16]
    赵丽娟, 王丹丹, 李建国, 等.枸杞真空远红外干燥特性及品质[J].天津科技大学学报, 2017, 32(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX201705004.htm

    ZHAO Lijuan, WANG Dandan, LI Jianguo, et al. Drying characteristics and product quality of lyciumbarbarumin vacuum far-infrared drying process[J]. Journal of Tianjin University of Science and Technology, 2017, 32(5): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TQYX201705004.htm
    [17]
    黄飞, 杨涛, 徐坤.远红外涂料在烟叶烤房中的应用[J].农业科技与装备, 2010(6): 9-12, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJD201006006.htm

    HUANG Fei, YANG Tao, XU Kun. The application of far-iR coating during the flue-cured tobacco curing[J]. Agricultural Science and Technology and Equipment, 2010(6): 9-12, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJD201006006.htm
    [18]
    LIU J, MENG J, LIANG J, et al. Effect of far infrared radiation ceramics containing rare earth additives on surface tension of water[J]. Journal of Rare Earths, 2014, 32(9): 890-894.
    [19]
    董宏宇.谷物干燥的红外辐射陶瓷材料及红外干燥机理研究[D].长春: 吉林大学, 2008.

    DONG Hongyu. Study on Infrared Ceramics Material and Drying Mechanism for Grain Drying[D]. Changchun: Jilin University, 2008.
    [20]
    Mongpraneet S, Abe T, Tsurusaki T. Accelerated drying of welsh onion by far infrared radiation under vacuum conditions[J]. Elsevier, 2002, 55(2): 147-156.
    [21]
    文雅欣.远红外辐照-热风干燥八角的动力学及品质变化研究[D].广州: 华南理工大学, 2019.

    WEN Yayin. Study on kinetics and quality changes of illicium verum by far infrared radiation-hot Air (FIR-HA) drying[D]. Guangzhou: South China University of Technology, 2019.
    [22]
    万江静, 郑霞, 高振江, 等.红枣片远红外辐射干燥的干燥特性及V_C变化[J].食品工业科技, 2016, 37(8): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201608016.htm

    WAN Jiangjing, ZHENG Xia, GAO Zhenjiang, et al. Far-infrared drying characteristics and the changes of VC of red jujube sheet[J]. Food Industry Technology, 2016, 37(8): 110-115. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201608016.htm
    [23]
    郭晨光..基于光线跟踪的高真实感红外三维场景仿真方法研究[D].西安: 西安电子科技大学, 2013.

    GUO Chenguang. Research on Method of High Realisttic Infrared Scence Simulation System Based on Ray Tracing[D]. Xi'an: Xi'an University of Electronic Science and Technology, 2013.
    [24]
    贾光亮, 宋雨宸.基于MODTRAN的红外大气透过率计算方法研究[J].电子世界, 2018(1): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201801043.htm

    JIA Guangliang, SONG Yuchen. Research on the calculation method of infrared atmospheric transmittance based on MODTRAN[J]. Electronic World, 2018(1): 71-72. https://www.cnki.com.cn/Article/CJFDTOTAL-ELEW201801043.htm
  • Cited by

    Periodical cited type(3)

    1. 马娜,辛璐,严钧戈,王屹昕. 接触式远红外理疗设备校准方法的研究. 中国计量. 2025(01): 125-127 .
    2. 韩进慧,王延明,胡波,杨玥,程耳号,刘虹邑,张建军,马素德. 红外辐射下线棒表面漆料的固化行为及性能. 辐射研究与辐射工艺学报. 2025(01): 34-41 .
    3. 杜元杰,谢焕雄,魏海,颜建春,徐效伟,陈文明. 远红外粮食烘干设备发展现状. 中国农机化学报. 2022(11): 107-117 .

    Other cited types(1)

Catalog

    Article views (220) PDF downloads (43) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return