WU Jie, MA Xiaohu. Anti-Occlusion Infrared Target Tracking AlgorithmBased on Fusion of Discriminant and Fine-Grained Features[J]. Infrared Technology , 2022, 44(11): 1139-1145.
Citation: WU Jie, MA Xiaohu. Anti-Occlusion Infrared Target Tracking AlgorithmBased on Fusion of Discriminant and Fine-Grained Features[J]. Infrared Technology , 2022, 44(11): 1139-1145.

Anti-Occlusion Infrared Target Tracking AlgorithmBased on Fusion of Discriminant and Fine-Grained Features

More Information
  • Received Date: June 17, 2022
  • Revised Date: August 30, 2022
  • Considering the problem in which the existing thermal infrared target tracking algorithms have difficulty dealing with similar object interference and target occlusion, the multi-task framework in the MMNet algorithm is introduced to obtain the specific discriminant features and fine-grained features of thermal infrared targets, which are fused to identify thermal infrared objects between and within classes. In addition, the peak side-lobe ratio is adopted to dynamically set the model update parameters and obtain the target change information more efficiently, in addition to evaluating the tracking results. For unreliable tracking results, a Kalman filter was unutilized to predict the target. The experimental results on the LSOTB-TIR dataset demonstrated that the performance of the improved algorithm was optimal. Compared with MMNet, the tracking accuracy and success rate were improved by 5.7% and 4.2%, respectively. It can effectively address the challenges of occlusion and deformation and can also be applied to the field of infrared target tracking.
  • [1]
    张晋, 王元余, 林丹丹, 等. 基于相关滤波的红外目标跟踪抗遮挡处理[J]. 红外技术, 2022, 44(3): 277-285. http://hwjs.nvir.cn/article/id/98939f6c-0de2-4692-9c34-9eabbb68205e

    ZHANG Jin, WANG Yuanyu, LIN Dandan, et al. Anti-occlusion process of infrared target tracking based on correlation filters[J]. Infrared Technology, 2022, 44(3): 277-285. http://hwjs.nvir.cn/article/id/98939f6c-0de2-4692-9c34-9eabbb68205e
    [2]
    Gundogdu E, Koc A, Solmaz B, et al. Evaluation of feature channels for correlation-filter-based visual object tracking in infrared spectrum[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW), 2016: 290-298.
    [3]
    LIU Q, LU X H, HE Z Y, et al. Deep convolutional neural networks for thermal infrared object tracking[J]. Knowledge-Based Systems, 2017, 134: 189-198. DOI: 10.1016/j.knosys.2017.07.032
    [4]
    GAO P, MA Y, SONG K, et al. Large margin structured convolution operator for thermal infrared object tracking[C]// IEEE International Conference on Pattern Recognition, 2018: 2380-2385.
    [5]
    LI X, LIU Q, FAN Nana, et al. Hierarchical spatial-aware Siamese network for thermal infrared object tracking[J]. Knowledge-Based Systems, 2019, 166: 71-81. DOI: 10.1016/j.knosys.2018.12.011
    [6]
    LIU Q, LI X, HE Z Y, et al. Learning deep multi-level similarity for thermal infrared object tracking[J]. IEEE Transaction on Multimedia, 2021, 23: 2124-2126.
    [7]
    李畅, 杨德东, 宋鹏, 等. 基于全局感知孪生网络的红外目标跟踪[J]. 光学学报, 2021, 41(6): 0615002-1-0615002-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202106019.htm

    LI Chang, YANG Dedong, SONG Pen, et al. Global-Aware siamese network for thermal infrared object tracking[J]. Acta Optica Sinica, 2021, 41(6): 0615002-1-0615002-11. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202106019.htm
    [8]
    LIU Q, LI X, HE Z Y, et al. Multi-task driven feature models for thermal infrared tracking[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020: 11604-11611.
    [9]
    Valmadre J, Bertinetto L, Henriques J, et al. End-to-end representation learning for correlation filter based tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 5000-5008.
    [10]
    王鹏, 孙梦宇, 王海燕, 等. 一种目标响应自适应的通道可靠性跟踪算法[J]. 电子与信息学报, 2020, 42(8): 1950-1958. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202008018.htm

    WANG Peng, SUN Mengyu, WANG Haiyan. An object tracking algorithm with channel reliability and target response adaptation[J]. Journal of Electronics & Information Technology, 2020, 42(8): 1950-1958. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202008018.htm
    [11]
    刘耀胜, 廖育荣, 林存宝. 基于核相关滤波的视频卫星目标跟踪算法[J]. 火力与指挥控制, 2022, 47(2): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ202202009.htm

    LIU Yaosheng, LIAO Yurong, LIN Cunbao. Video satellite object tracking algorithm based on kernel correlation filter[J]. Fire Control & Command Control, 2022, 47(2): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HLYZ202202009.htm
    [12]
    MA C, HUANG J-B, YANG X, et al. Hierarchical convolutional features for visual racking[C]//IEEE International Conference on Computer Vision, 2015: 3074-3082.
    [13]
    WANG N, ZHOU W, TIAN Q, et al. Multi-cue correlation filters for robust visual tracking[C]// IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4844-4853.
    [14]
    Danelljan M, Hager G, Shahbaz Khan F, et al. Learning spatially regularized correlation filters for visual tracking[C]//IEEE International Conference on Computer Vision, 2015: 4310-4318.
    [15]
    Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal Computer Vision, 2015, 115(3): 211-252. DOI: 10.1007/s11263-015-0816-y
    [16]
    LIU Q, LI X, LI C L. LSOTB-TIR: A large-scale high-diversity thermal infrared object tracking benchmark[C/OL]//Proceedings of the 28th ACM International Conference on Multimedia, 2020, https://arxiv.org/abs/2008.00836.
  • Related Articles

    [1]GU Yaqing, GE Bin, GAO Chen. Fuzzy Filter-based Mixed Noise Processing for Molten Steel Infrared Image[J]. Infrared Technology , 2019, 41(7): 623-627.
    [2]LIU Zhe, HAN jiuqiang, HUANG ShiQi. Single Image Super-Resolution Based on Multi-Guided Filtering[J]. Infrared Technology , 2017, 39(10): 920-927.
    [3]WANG Qiang, ZHANG Hexin, MENG Fei, XIONG Peng. A Novel Fuzzy Filter for Speckle Noise Removal[J]. Infrared Technology , 2016, 38(5): 415-421.
    [4]YANG You-liang, WANG Xin-yu, MA Cui-hong. Adaptive Wiener Filtering Noise Reduction in the Molten Steel Infrared Image[J]. Infrared Technology , 2015, (9): 733-735.
    [5]WANG Shu-peng, GAO Teng. Destriping Method for Infrared Image Based on Bilateral Filter[J]. Infrared Technology , 2014, (9): 728-731.
    [6]A New Adaptive Filtering Algorithm Based on Salt & Pepper Noise in Infrared Image[J]. Infrared Technology , 2013, (8): 502-506.
    [7]QIAN Wei-xian, CHEN Qian, GU Guo-hua. A New Adaptive Median Filter[J]. Infrared Technology , 2009, 31(5): 291-294. DOI: 10.3969/j.issn.1001-8891.2009.05.012
    [8]LI Hong-jun, ZHAO Zhi-min, CHEN Yuan, ZHENG Min. Research on Image Denoising via Different Filters in Contourlet Domain[J]. Infrared Technology , 2008, 30(8): 450-453. DOI: 10.3969/j.issn.1001-8891.2008.08.005
    [9]YU Rui-xing, ZHU Bing, ZHANG Ke, LV Mei-bo. A Level Set Method Based on the Adaptive Filter[J]. Infrared Technology , 2007, 29(5): 279-282. DOI: 10.3969/j.issn.1001-8891.2007.05.008
    [10]Finite Impulse Response Digital Filters in the Signal/Noise Testsets of Image Intensifiers[J]. Infrared Technology , 2002, 24(4): 12-15. DOI: 10.3969/j.issn.1001-8891.2002.04.004
  • Cited by

    Periodical cited type(6)

    1. 赵梓惠,周永康,曾邦泽,唐兴芬,傅志宇,殷永成. 红外图像降噪综述. 红外技术. 2025(03): 299-306 . 本站查看
    2. 宁大海,郑晟. 可见光和红外图像决策级融合目标检测算法. 红外技术. 2023(03): 282-291 . 本站查看
    3. 冯杰,张莹,叶影,贺润平,王哲斐. NSST域电气设备红外图像增强处理算法设计. 电子设计工程. 2023(21): 176-179+185 .
    4. 张桓,陈志盛. 多尺度自校正双直方图均衡化红外图像增强. 红外技术. 2023(12): 1207-1215 . 本站查看
    5. 金玫秀,朱士虎,王通,庄飞飞. 基于卤素灯激励的红外热成像裂纹无损检测研究. 红外技术. 2022(04): 421-427 . 本站查看
    6. 王东升,王海龙,张芳,韩林芳,赵怡琳. 基于时序信息的红外图像缺陷信息提取. 红外技术. 2022(06): 565-570 . 本站查看

    Other cited types(9)

Catalog

    Article views (151) PDF downloads (45) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return