ZHANG Jun, ZHANG Peng, ZHANG Zheng, BAI Yunfei. Similar HED-Net for Salient Human Detection in Thermal Infrared Images[J]. Infrared Technology , 2023, 45(6): 649-657.
Citation: ZHANG Jun, ZHANG Peng, ZHANG Zheng, BAI Yunfei. Similar HED-Net for Salient Human Detection in Thermal Infrared Images[J]. Infrared Technology , 2023, 45(6): 649-657.

Similar HED-Net for Salient Human Detection in Thermal Infrared Images

More Information
  • Received Date: March 28, 2021
  • Revised Date: April 26, 2021
  • Human targets in thermal infrared images are easy to observe and have a wide range of applications. However, they are limited by the hardware of thermal infrared devices. The edges of human targets in the images are often blurred and the detection efficiency is poor. Simultaneously, because of the special imaging principle of thermal infrared, human target detection is vulnerable to the interference of heating and occlusion objects and the detection accuracy cannot be guaranteed. In response to the above issues, this study proposes a type of holistically nested edge detection (HED)-thermal infrared saliency human detection network. The network adopted the form of a similar HED network and detected human targets by adding the residuals of different proportions of the hole convolutional codec module. Experiments showed that the network can effectively detect human targets, accurately predict the edge structure, and also have high detection accuracy in an environments with heating objects and obstructions.
  • [1]
    ZHAO Z Q, ZHANG P, XU S T, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems of IEEE, 2018, 30(11): 3212-3232.
    [2]
    ZHANG Y, GUO L, CHENG G. Improved salient objects detection based on salient points[C]//35th Chinese Control Conference (CCC) of IEEE, 2016. DOI. : 10.1109/ChiCC. 2016.7554008.
    [3]
    ZHAN Jin, HU Bo. Salient object contour detection based on boundary similar region[C]//Fourth International Conference on Digital Home IEEE Computer Society, 2012. DOI: 10.1109/ICDH.2012.74.
    [4]
    Yuna Seo, Donghoon Lee, Yoo C D. Salient object detection using bipartite dictionary[C]//IEEE International Conference on Image Processing, 2014. DOI: 10.1109/ICIP.2014.7025228.
    [5]
    Nouri F, Kazemi K, Danyali H. Salient object detection via global contrast graph[C]//2015 Signal Processing and Intelligent Systems Conference (SPIS) Of IEEE, 2016. DOI: 10.1109/SPIS.2015.7422332.
    [6]
    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
    [7]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-sale image recognition[J]. Computer Science, 2014. DOI: 10.48550/arXiv.1409.1556.
    [8]
    Sewak M. Practical Convolution Neural Networks[M]. Birmingham: Published by Packt Publishing Ltd. 2018.
    [9]
    LIU Wei, Dragomir Anguelov, Dumitru Erhan, et al. SSD: single shot multiBox detector[C]//IEEE European Conference on Computer Vision (ECCV), 2016, DOI: 10.1007/978-3-319-46448-0_2.
    [10]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, DOI: 10.1109/CVPR.2016.90.
    [11]
    HUANG G, LIU Z, Laurens V D M, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, DOI: 10.1109/CVPR.2017.243.
    [12]
    REN Qinghua, HU Renjie. Densely connected refinement network for salient object detection[C]//International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2018, DOI: 10.1109/ISPACS.2018.8923354.
    [13]
    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//2015 MICCAI, DOI: 10.1109/ACCESS.2021.3053408.
    [14]
    LIU N, HAN J, YANG M H. PiCANet: learning pixel-wise contextual attention for saliency detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) of IEEE, 2018: DOI: 10.48550/arXiv.1708.06433.
    [15]
    FENG M, LU H, DING E. Attentive feedback network for boundary-aware salient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, DOI: 10.1109/CVPR.2019.00172.
    [16]
    QIN Xuebin, ZHANG Zichen, HUANG Chenyang. et al. BASNet: boundary-aware salient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) of IEEE, 2019, DOI: 10.1109/CVPR.2019.00766.
    [17]
    LIU Jiangjiang, HOU Qibin, et al. A simple pooling-based design for real-time salient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition of IEEE, 2019, DOI: 10.1109/CVPR.2019.00404..
    [18]
    XIE S, TU Z. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(5): 3-18.
    [19]
    Mark Sandler, Andrew Howard, et al. MobileNet V2: inverted residuals and linear bottlenecks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520, DOI: 10.1109/CVPR.2018.00474.
    [20]
    Andrew Howard, M Zhu, B Chen, et al. MobileNets: efficient convolution neural networks for mobile vision application[J/OL]//Computer Science, arXiv: 1704.04861, https://arxiv.org/abs/1704.04861.
    [21]
    YU Fisher, Koltun V. Multi-scale context aggregation by dilated convolutions[C]//The International Conference on Learning Representations, 2016, DOI: 10.48550/arXiv.1511.07122.
    [22]
    CHEN L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[C]//Computer Science, 2017. arXiv: 1706.05587, https://arxiv.org/abs/1706.05587.
    [23]
    CHEN Q, XU J, Koltun V. Fast image processing with fully convolutional networks[C]//ICCV of IEEE, 2017, DOI: 10.1109/ICCV.2017.273.
    [24]
    LIN Tsungyi, Piotr Dollar, R Girshick, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) of IEEE, 2017, DOI: 10.1109/CVPR.2017.106.
  • Related Articles

    [1]FENG Hongwei, LIU Yuanyuan, WEN Ziteng, TAN Yong. Recognition Algorithm for an Infrared Flame Detector Based on an Improved Takagi-Sugeno Fuzzy Radial Basis Function Neural Network[J]. Infrared Technology , 2021, 43(1): 37-43.
    [2]HAO Zhenghui, ZHANG Xuesong, WANG Gao, DENG Fangfang, WEI Xuan, YUAN Dongfang. Auto Focusing Evaluation Function Based on Edge Contour Extraction[J]. Infrared Technology , 2018, 40(2): 170-175.
    [3]PAN Xuejuan, ZHU Youpan, PAN Chao, XIA Likun, ZENG Bangze, LUO Lin, ZHAO Deli, LI Zemin. The Influence of Energy Fluctuation of Image on Auto Focus Sharpness Evaluation Function[J]. Infrared Technology , 2016, 38(12): 1032-1037.
    [4]ZHAO Xiaoli, ZHOU Pucheng, XUE Mogen. A Kind of Infrared Image Segment Method Using Improved Chan-Vese Model[J]. Infrared Technology , 2016, 38(9): 774-778.
    [5]GUO Jingbin, FENG Huajie, WANG Long, PENG Qinjian, LI Xingfei. Design of Focusing Window Based on Energy Function of Gradient[J]. Infrared Technology , 2016, 38(3): 197-202.
    [6]YU Hao, LIU Bing-qi, YING Jia-ju, HU Wen-gang. One-Dimension Image Edge Detection Method Based on Sigmoidal Function Fitting[J]. Infrared Technology , 2014, (10): 816-819.
    [7]LIU En-fan, YANG Jiu-cheng, SHI Wen-jun, XU Guo-qiang. An Infrared Image Segmentation Approach based on Improved Chan-Vese Model[J]. Infrared Technology , 2011, 33(9): 545-551. DOI: 10.3969/j.issn.1001-8891.2011.09.013
    [8]WEI Tong-lei, ZENG Qing-ping, ZHOU Yan, BAI Bin. A Method for Radial Moving Small Targets Detecting[J]. Infrared Technology , 2007, 29(12): 712-715. DOI: 10.3969/j.issn.1001-8891.2007.12.008
    [9]CAO Zhan-hui, LI Yan-jun, ZHANG Ke, WU Pan-long. A Novel Linear Edge Extraction Method Based on Gaussian Function[J]. Infrared Technology , 2006, 28(4): 207-209. DOI: 10.3969/j.issn.1001-8891.2006.04.006
    [10]YU Rui-xing, LI Yan-jun, ZHANG Ke. Infrared Image Edge Detection Using Improved Bubble Function[J]. Infrared Technology , 2006, 28(1): 36-38. DOI: 10.3969/j.issn.1001-8891.2006.01.009
  • Cited by

    Periodical cited type(3)

    1. 吴锦涛,王安志,任春洪. RGB-T显著性目标检测综述. 红外技术. 2025(01): 1-9 . 本站查看
    2. 谢晗孛. 基于HED的四边形检测系统的研究及实现. 自动化应用. 2024(10): 222-224+228 .
    3. 林瑞冰,罗芊芊,葛苏敏,吴卓俊,徐平华. 复杂背景图像中人体轮廓的自动提取. 北京服装学院学报(自然科学版). 2024(02): 104-110 .

    Other cited types(0)

Catalog

    Article views (128) PDF downloads (30) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return