ZHANG Jun, ZHANG Peng, ZHANG Zheng, BAI Yunfei. Similar HED-Net for Salient Human Detection in Thermal Infrared Images[J]. Infrared Technology , 2023, 45(6): 649-657.
Citation: ZHANG Jun, ZHANG Peng, ZHANG Zheng, BAI Yunfei. Similar HED-Net for Salient Human Detection in Thermal Infrared Images[J]. Infrared Technology , 2023, 45(6): 649-657.

Similar HED-Net for Salient Human Detection in Thermal Infrared Images

More Information
  • Received Date: March 28, 2021
  • Revised Date: April 26, 2021
  • Human targets in thermal infrared images are easy to observe and have a wide range of applications. However, they are limited by the hardware of thermal infrared devices. The edges of human targets in the images are often blurred and the detection efficiency is poor. Simultaneously, because of the special imaging principle of thermal infrared, human target detection is vulnerable to the interference of heating and occlusion objects and the detection accuracy cannot be guaranteed. In response to the above issues, this study proposes a type of holistically nested edge detection (HED)-thermal infrared saliency human detection network. The network adopted the form of a similar HED network and detected human targets by adding the residuals of different proportions of the hole convolutional codec module. Experiments showed that the network can effectively detect human targets, accurately predict the edge structure, and also have high detection accuracy in an environments with heating objects and obstructions.
  • [1]
    ZHAO Z Q, ZHANG P, XU S T, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems of IEEE, 2018, 30(11): 3212-3232.
    [2]
    ZHANG Y, GUO L, CHENG G. Improved salient objects detection based on salient points[C]//35th Chinese Control Conference (CCC) of IEEE, 2016. DOI. : 10.1109/ChiCC. 2016.7554008.
    [3]
    ZHAN Jin, HU Bo. Salient object contour detection based on boundary similar region[C]//Fourth International Conference on Digital Home IEEE Computer Society, 2012. DOI: 10.1109/ICDH.2012.74.
    [4]
    Yuna Seo, Donghoon Lee, Yoo C D. Salient object detection using bipartite dictionary[C]//IEEE International Conference on Image Processing, 2014. DOI: 10.1109/ICIP.2014.7025228.
    [5]
    Nouri F, Kazemi K, Danyali H. Salient object detection via global contrast graph[C]//2015 Signal Processing and Intelligent Systems Conference (SPIS) Of IEEE, 2016. DOI: 10.1109/SPIS.2015.7422332.
    [6]
    Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
    [7]
    Simonyan K, Zisserman A. Very deep convolutional networks for large-sale image recognition[J]. Computer Science, 2014. DOI: 10.48550/arXiv.1409.1556.
    [8]
    Sewak M. Practical Convolution Neural Networks[M]. Birmingham: Published by Packt Publishing Ltd. 2018.
    [9]
    LIU Wei, Dragomir Anguelov, Dumitru Erhan, et al. SSD: single shot multiBox detector[C]//IEEE European Conference on Computer Vision (ECCV), 2016, DOI: 10.1007/978-3-319-46448-0_2.
    [10]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, DOI: 10.1109/CVPR.2016.90.
    [11]
    HUANG G, LIU Z, Laurens V D M, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, DOI: 10.1109/CVPR.2017.243.
    [12]
    REN Qinghua, HU Renjie. Densely connected refinement network for salient object detection[C]//International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2018, DOI: 10.1109/ISPACS.2018.8923354.
    [13]
    Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[C]//2015 MICCAI, DOI: 10.1109/ACCESS.2021.3053408.
    [14]
    LIU N, HAN J, YANG M H. PiCANet: learning pixel-wise contextual attention for saliency detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) of IEEE, 2018: DOI: 10.48550/arXiv.1708.06433.
    [15]
    FENG M, LU H, DING E. Attentive feedback network for boundary-aware salient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, DOI: 10.1109/CVPR.2019.00172.
    [16]
    QIN Xuebin, ZHANG Zichen, HUANG Chenyang. et al. BASNet: boundary-aware salient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR) of IEEE, 2019, DOI: 10.1109/CVPR.2019.00766.
    [17]
    LIU Jiangjiang, HOU Qibin, et al. A simple pooling-based design for real-time salient object detection[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition of IEEE, 2019, DOI: 10.1109/CVPR.2019.00404..
    [18]
    XIE S, TU Z. Holistically-nested edge detection[J]. International Journal of Computer Vision, 2017, 125(5): 3-18.
    [19]
    Mark Sandler, Andrew Howard, et al. MobileNet V2: inverted residuals and linear bottlenecks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520, DOI: 10.1109/CVPR.2018.00474.
    [20]
    Andrew Howard, M Zhu, B Chen, et al. MobileNets: efficient convolution neural networks for mobile vision application[J/OL]//Computer Science, arXiv: 1704.04861, https://arxiv.org/abs/1704.04861.
    [21]
    YU Fisher, Koltun V. Multi-scale context aggregation by dilated convolutions[C]//The International Conference on Learning Representations, 2016, DOI: 10.48550/arXiv.1511.07122.
    [22]
    CHEN L C, Papandreou G, Schroff F, et al. Rethinking atrous convolution for semantic image segmentation[C]//Computer Science, 2017. arXiv: 1706.05587, https://arxiv.org/abs/1706.05587.
    [23]
    CHEN Q, XU J, Koltun V. Fast image processing with fully convolutional networks[C]//ICCV of IEEE, 2017, DOI: 10.1109/ICCV.2017.273.
    [24]
    LIN Tsungyi, Piotr Dollar, R Girshick, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) of IEEE, 2017, DOI: 10.1109/CVPR.2017.106.
  • Related Articles

    [1]CHEN Xiaohan, XU Yuanyuan. Infrared Multi-Scale Target Detection Algorithm Based on RCR-YOLO[J]. Infrared Technology , 2025, 47(4): 459-467.
    [2]LIU Xin, ZHANG Bin. Electronic Zooming of Infrared Image Based on Lightweight Multi-scale Aggregation Network[J]. Infrared Technology , 2025, 47(4): 445-452.
    [3]YE Baicheng, ZHU Youpan, ZHOU Yongkang, DUAN Chenhao, ZHANG Yudong, TAO Zhigang, FU Zhiyu. Review of Lightweight Target Detection Algorithms[J]. Infrared Technology , 2025, 47(3): 289-298.
    [4]CHEN Yonglin, WANG Hengtao, ZHANG Shang. Lightweight Infrared Target Detection Algorithm Based on YOLO v7[J]. Infrared Technology , 2024, 46(12): 1380-1389.
    [5]SHAO Yanhua, HUANG Qimeng, MEI Yanying, ZHANG Xiaoqiang, CHU Hongyu, WU Yadong. Multi-scale Anchor Construction Method for Object Detection[J]. Infrared Technology , 2024, 46(2): 162-167.
    [6]ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
    [7]CHEN Yanlin, WANG Zhishe, SHAO Wenyu, YANG Fan, SUN Jing. Multi-scale Transformer Fusion Method for Infrared and Visible Images[J]. Infrared Technology , 2023, 45(3): 266-275.
    [8]SUN Shixin, ZHENG Zhiyun. Genetic Algorithm for Infrared Multi-target Detection Based on Multi-scale NNLoG Feature[J]. Infrared Technology , 2019, 41(9): 837-842.
    [9]SHEN Xu, CHENG Xiaohui, WANG Xinzheng. Infrared Dim-small Object Detection Algorithm Based on Adaptive Scale Local Contrast Enhancement Combined with Visual Attention Mechanism[J]. Infrared Technology , 2019, 41(8): 764-771.
    [10]WANG Yu-xiang, HAN Zhen-duo, WANG Hong-min. Detection Algorithm for Dim Infrared Target Based on Multi-Difference Factor[J]. Infrared Technology , 2012, 34(6): 351-355. DOI: 10.3969/j.issn.1001-8891.2012.06.009
  • Cited by

    Periodical cited type(5)

    1. 李鹏. 基于红外测温技术的农村配网设备运行监测研究. 中国新技术新产品. 2025(03): 127-129 .
    2. 樊慧文. 深度学习在输变电设备故障状态检测中的应用研究. 电工技术. 2025(02): 95-97+101 .
    3. 刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展. 中国电机工程学报. 2025(06): 2171-2196 .
    4. 李冰,杜喜英,王玉莹,翟永杰. 基于改进YOLOv8n的变电设备红外图像实例分割算法. 电子测量技术. 2024(10): 151-159 .
    5. 佟忠正,孙旸子. 基于U-Net网络的电力设备巡检图像增强模型及其自动控制研究. 自动化与仪表. 2024(11): 79-82+91 .

    Other cited types(1)

Catalog

    Article views (128) PDF downloads (30) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return