Citation: | YUAN Gang, XU Zhihao, KANG Bing, LUO Lyu, ZHANG Wenhua, ZHAO Tiancheng. DeepLabv3+ Network-based Infrared Image Segmentation Method for Current Transformer[J]. Infrared Technology , 2021, 43(11): 1127-1134. |
[1] |
王小芳, 毛华敏. 一种复杂背景下的电力设备红外图像分割方法[J]. 红外技术, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004
WANG Xiaofang, MAO Huamin. Infrared Image Segmentation Method for Power Equipment in Complex Background[J]. Infrared Technology, 2019, 41(12): 1111-1116. http://hwjs.nvir.cn/article/id/hwjs201912004
|
[2] |
GONG X, YAO Q, WANG M, et al. A deep learning approach for oriented electrical equipment detection in thermal images[J]. IEEE Access, 2018: 1-1. Doi: 10.1109/ACCESS.2018.2859048.
|
[3] |
康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016.
KANG Long. Substation equipment fault diagnosis based on infrared image processing[D]. Beijing: North China Electric Power University, 2016.
|
[4] |
曾亮. 基于红外图像的变电站设备故障精准定位方法的研究[D]. 重庆: 重庆理工大学, 2019.
ZENG Liang. Research on precise fault location method of substation equipment based on infrared image[D]. Chongqing: Chongqing University of Technology, 2019.
|
[5] |
ZOU H, HUANG F. A novel intelligent fault diagnosis method for electrical equipment using infrared thermography[J]. Infrared Physics & Technology, 2015, 73: 29-35. http://www.onacademic.com/detail/journal_1000038244612810_35a3.html
|
[6] |
王旭红, 李浩, 樊绍胜, 等. 基于改进SSD的电力设备红外图像异常自动检测方法[J]. 电工技术学报, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm
WANG Xuhong, LI Hao, FAN Shaosheng, et al. Infrared image anomaly automatic detection method for power equipment based on improved single shot multi box detection[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS2020S1034.htm
|
[7] |
林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2015, 43(16): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201516013.htm
LIN Ying, GUO Zhihong, CHEN Yufeng. Convolutional-recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2015, 43(16): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-JDQW201516013.htm
|
[8] |
刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm
LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infraredimages of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-NFDW201902006.htm
|
[9] |
王晨. 基于深度学习的红外图像语义分割技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2017.
WANG Chen. Research on infrared image semantic segmentation technology based on deep learning[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2017.
|
[10] |
邝辉宇, 吴俊君. 基于深度学习的图像语义分割技术研究综述[J]. 计算机工程与应用, 2019, 55(19): 12-21, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201919003.htm
KUANG Huiyu, WU Junjun. Survey of image semantic segmentation based on deep learning[J]. Computer Engineering and Applications, 2019, 55(19): 12-21, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201919003.htm
|
[11] |
LONG J, Shelhamer E, Darrell T. Fully convolutional net-works for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
|
[12] |
袁铭阳, 黄宏博, 周长胜. 全监督学习的图像语义分割方法研究进展[J]. 计算机工程与应用, 2021, 57(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202104007.htm
YUAN Mingyang, HUANG Hongbo, ZHOU Changsheng. Research progress of image semantic segmentation based on fully supervised learning[J]. Computer Engineering and Applications, 2021, 57(4): 43-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202104007.htm
|
[13] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495, DOI: 10.1109/TPAMI.2016.2644615.
|
[14] |
Garcia-Garcia A, Orts-Escolano S, Oprea S, et al. A review on deep learning techniques applied to semantic segmentation[J/OL]. Computer Vision and Pattern Recognition, 2017. https://arxiv.org/abs/1704.06857.
|
[15] |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[J/OL]. Computer Vision and Pattern Recognition, 2016. https://arxiv.org/abs/1602.07261.
|
[16] |
CHEN L C, Papandreou G, Kokkinos I, et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184
|
[17] |
刘致驿, 孙韶媛, 任正云, 等. 基于改进DeepLabv3+的无人车夜间红外图像语义分割[J]. 应用光学, 2020, 41(1): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202001031.htm
LIU Zhiyi, SUN Shaoyuan, REN Zhengyun, et al. Semantic segmentation of nocturnal infrared images of unmannedvehicles based on improved DeepLabv3+[J]. Journal of Applied Optics, 2020, 41(1): 180-185. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202001031.htm
|
[18] |
于天河, 赵树梅, 兰朝凤. 结合视觉特性的红外图像增强方法[J]. 激光与红外, 2020, 50(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202001024.htm
YU Tianhe, ZHAO Shumei, LAN Chaofeng. Infrared image enhancement method combining visual characteristics[J]. Laser & Infrared, 2020, 50(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202001024.htm
|
[19] |
Zuiderveld Karel. Contrast Limited Adaptive Histograph Equalization[J]. Graphic Gems IV. San Diego: Academic Press Professional, 1994: 474-485. DOI: 10.1016/B978-0-12-336156-1.50061-6.
|
[20] |
WONG S C, Gatt A, Stamatescu V, et al. Understanding data augmentation for classification: when to warp?[C/OL]//International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2016. https://arxiv.org/pdf/1609.08764.pdf.
|
[21] |
Csurka G, Larlus D, Perronnin F. What is a good evaluation measure for semantic segmentation?[C/OL]//BMVC, 2013. http://www.bmva.org/bmvc/2013/Papers/paper0032/abstract0032.pdf.
|