SHEN Ji, NA Qiyue, XU Jiandong, CHANG Weijing, ZHANG Wei, JIAN Yunfei. 640×512 Frame Transfer EMCCD Camera Timing Sequence Design[J]. Infrared Technology , 2023, 45(5): 548-552.
Citation: SHEN Ji, NA Qiyue, XU Jiandong, CHANG Weijing, ZHANG Wei, JIAN Yunfei. 640×512 Frame Transfer EMCCD Camera Timing Sequence Design[J]. Infrared Technology , 2023, 45(5): 548-552.

640×512 Frame Transfer EMCCD Camera Timing Sequence Design

More Information
  • Received Date: October 26, 2021
  • Revised Date: June 22, 2022
  • An EMCCD camera was introduced to realize 25 fps continuous dynamic imaging with 640×512 resolution under 1×10-3 lx illuminance. Through the construction of the camera hardware platform, as well as the analysis of the EMCCD working timing, AFE working timing, BT.656 encoding, and Camera Link encoding timing, the camera uses FPGA and HDL to generate the corresponding driver timing. This includes EMCCD exposure and readout, AFE-correlated double sampling and optical dark clamping, analog video progressive to interlacing and stretching, and Camera Link parallel to serial conversion. The camera operates under the following conditions: 1×10-3 lx simulated night sky illuminance, 1000× EMCCD gain, 25 mm lens focus, and F1.4; the experimental results demonstrate the imaging frame rate of 25 fps and SNR of 21.8 dB.
  • [1]
    Hynecek J. Impactron-a new solid state image intensifier[J]. IEEE Transactions on Electron Devices, 2001, 48(10): 2238-2241. DOI: 10.1109/16.954460
    [2]
    Jerram P. The LLCCD: low-light imaging without the need for an intensifier[C]//Proc SPIE, 2001, 4306: 178-186.
    [3]
    Hainsworth A H, Lee S, Foot P, et al. Super‐resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super‐resolution optical fluctuation imaging (SOFI)[J]. Neuropathology and Applied Neurobiology, 2018, 44(4): 417-426. DOI: 10.1111/nan.12426
    [4]
    WANG Z, LU Y, LI W, et al. Single image super-resolution with attention-based densely connected module[J]. Neurocomputing, 2021, 453: 876-884. DOI: 10.1016/j.neucom.2020.08.070
    [5]
    QIU D, ZHENG L, ZHU J, et al. Multiple improved residual networks for medical image super-resolution[J]. Future Generation Computer Systems, 2021, 116: 200-208. DOI: 10.1016/j.future.2020.11.001
    [6]
    Chaurasiya K R, Dame R T. Single Molecule FRET Analysis of DNA Binding Proteins[M]//Single Molecule Analysis. Humana Press, New York, NY, 2018: 217-239.
    [7]
    WANG R, ZHANG G, LIU H. DNA-templated nanofabrication[J]. Current Opinion in Colloid & Interface Science, 2018, 38: 88-99.
    [8]
    Shriver R, Veatch S. A Hands-on freshman seminar course in DNA origami[J]. Biophysical Journal, 2017, 112(3): 464a. http://www.onacademic.com/detail/journal_1000039866432810_11e3.html
    [9]
    Chakraborty S, Hasan G. Spontaneous Ca2+ influx in drosophila pupal neurons is modulated by IP3-receptor function and influences maturation of the flight circuit[J]. Frontiers in Molecular Neuroscience, 2017, 10: 111. DOI: 10.3389/fnmol.2017.00111
    [10]
    Montecchi R, Schwob E. Long-term imaging of DNA damage and cell cycle progression in budding yeast using spinning disk confocal microscopy[M]//New York: Genome Instability. Humana Press, 2018: 527-536.
    [11]
    Schubeis T, Le Marchand T, Andreas L B, et al. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins[J]. Journal of Magnetic Resonance, 2018, 287: 140-152. DOI: 10.1016/j.jmr.2017.11.014
    [12]
    LEE J, FENG X, CHEN O, et al. Stable, small, specific, low-valency quantum dots for single-molecule imaging[J]. Nanoscale, 2018, 10(9): 4406-4414. DOI: 10.1039/C7NR08673C
    [13]
    Enomoto T, Kubota H, Mori K, et al. Absolute bioluminescence imaging at the single-cell level with a light signal at the Attowatt level[J]. BioTechniques, 2018, 64(6): 270-274. DOI: 10.2144/btn-2018-0043
    [14]
    Feinendegen L E, Cuttler J M. Biological effects from low doses and dose rates of ionizing radiation: science in the service of protecting humans, a synopsis[J]. Health Physics, 2018, 114(6): 623-626. DOI: 10.1097/HP.0000000000000833
    [15]
    刘智超, 樊桂花, 郭惠超, 等. 基于EMCCD的激光主动成像参数分析[J]. 激光与红外, 2016, 46(3): 271-274. DOI: 10.3969/j.issn.1001-5078.2016.03.005

    Liu Zhichao, Fan Guihua, Guo Huichao et al. Analysis of laser active imaging parameters based on EMCCD[J]. Laser & Infrared, 2016, 46(3): 271-274. DOI: 10.3969/j.issn.1001-5078.2016.03.005
    [16]
    龚德铸, 王立, 卢欣. 微光探测EMCCD在高灵敏度星敏感器中的应用研究[J]. 红外与激光工程, 2007(z2): 534-539. DOI: 10.3969/j.issn.1007-2276.2007.z2.139

    Gong Dezhu, Wang Li, Lu Xin. Detection of faint light EMCCD based on star sensor[J]. Infrared and Laser Engineering, 2007(z2): 534-539. DOI: 10.3969/j.issn.1007-2276.2007.z2.139
    [17]
    米本和也, 陈榕庭, 彭美桂. CCD/CMOS图像传感器基础与应用[M]. 北京: 科学出版社, 2006: 98-100.

    Mibenheye, Chen Rongting, Peng Meigui. Fundamentals and Applications of CCD/CMOS image sensor[M].Beijing: Science Press, 2006: 98-100.
    [18]
    Automated Imaging Association. Specifications of the Camera Link Interface Standard for Digital Cameras and Frame Grabbers, Version 1.1[Z/OL]. Automated Imaging Association, 2000, http://edge.rit.edu/content/P10662/public/old/Specs/CameraLink%20Specs.pdf.
  • Related Articles

    [1]LIU Lei, QIAN Yunsheng. A Low Illumination Image Acquisition and Processing System Based on FPGA[J]. Infrared Technology , 2022, 44(5): 462-468.
    [2]SUN Shaowei, YANG Yuetao, YANG Bingwei, WAN Anjun, ZHONG Hailin. Research and Implementation of Infrared Lens Auto-focus Technology Based on Field Programmable Gate Array[J]. Infrared Technology , 2021, 43(5): 464-472.
    [3]CHI Linhui, QIAN Yunsheng, JI Yuhao. Verification Protocol for Improving Communication Stability Between FPGAs[J]. Infrared Technology , 2020, 42(11): 1022-1027.
    [4]High-speed Spectrum Inversion System Based on FPGA[J]. Infrared Technology , 2019, 41(6): 535-539.
    [5]LIU Yuan, LI Qing, LIANG Yanju. Implementation of Infrared Target Detection System Based on FPGA[J]. Infrared Technology , 2019, 41(6): 521-526.
    [6]LIU Jiangping, XUE Heru. High-speed Spectrum Acquisition and Processing System Based on FPGA[J]. Infrared Technology , 2018, 40(11): 1042-1046.
    [7]ZHANG Chenghong, LI Fanming, YANG Long. Real Time Infrared Video Capture and Display System Based on FPGA[J]. Infrared Technology , 2017, 39(2): 143-146.
    [8]LIU Rui-qiang, WANG Yong-xin. Based on FPGA Real-time Spectrum Obtained of Static Fourier Spectrometer[J]. Infrared Technology , 2011, 33(8): 465-469. DOI: 10.3969/j.issn.1001-8891.2011.08.008
    [9]GONG Man-man, CHEN Qian, GU Guo-hua, SUI Xiu-bao. FPGA-Based Realization of Second-Order Newton Interpolation of Infrared Image[J]. Infrared Technology , 2010, 32(12): 723-726. DOI: 10.3969/j.issn.1001-8891.2010.12.009
    [10]Improved Canny Edge Detection Algorithm and Implementation in FPGA[J]. Infrared Technology , 2010, 32(2): 93-96. DOI: 10.3969/j.issn.1001-8891.2010.02.008
  • Cited by

    Periodical cited type(1)

    1. 朱强,周维虎,陈晓梅,石俊凯,李冠楠. 高速实时近红外弱信号检测系统. 光学精密工程. 2022(24): 3116-3127 .

    Other cited types(2)

Catalog

    Article views (163) PDF downloads (41) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return