Citation: | ZHAO Zixuan, WU Jin, ZHU Lei. High-resolution Remote Sensing Image Semantic Segmentation Based on GLNet and HRNet[J]. Infrared Technology , 2021, 43(5): 437-442. |
[1] |
田萱, 王亮, 丁琪. 基于深度学习的图像语义分割方法综述[J]. 软件学报, 2019, 30(2): 250-278. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201902014.htm
TIAN X, WANG L, DING Q. Review of Image Semantic Segmentation Based on Deep Learning[J]. Journal of Software, 2019, 30(2): 440-468. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201902014.htm
|
[2] |
LONG J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431-3440.
|
[3] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of International Conference on Learning Representation, 2015: 1-13.
|
[4] |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-assisted Intervention, 2015: 234-241.
|
[5] |
Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1520-1528.
|
[6] |
Badrinarayanan V, Kendall A, Cipolla R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615
|
[7] |
CHEN L C, Papandreou G, Kokkinos I, et al. Deep Lab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834. DOI: 10.1109/TPAMI.2017.2699184
|
[8] |
Paszke A, Chaurasia A, Kim S, et al. Enet: A deep neural network architecture for real-time semantic segmentation[J/OL]. arXiv preprint, 2016, https://arxiv.org/abs/1606.02147.
|
[9] |
ZHAO H, QI X, SHEN X, et al. Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision, 2018: 405-420.
|
[10] |
CHEN W, JIANG Z, WANG Z, et al. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 8924-8933.
|
[11] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[12] |
LIN T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
|
[13] |
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
|
[14] |
HOU Q, CHENG M M, HU X, et al. Deeply supervised salient object detection with short connections[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3203-3212.
|
[15] |
LIN T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
|
[16] |
Kingma D P, Ba J. Adam: A method for stochastic optimization[J/OL]. arXiv preprint arXiv: 1412.6980, 2014.
|
[17] |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
|
[1] | ZHAO Qiang, LIU Shengjie, HAN Dongcheng, LIU Changyu, YANG Shizhi. Improved K-means Clustering-based Defect Detection Method for Photovoltaic Panels[J]. Infrared Technology , 2024, 46(4): 475-482. |
[2] | ZHANG Qingyu, FAN Yugang, GAO Yang. Defect Detection of Eddy-Current Thermography Based on Single-Scale Retinex and Improved K-means Clustering[J]. Infrared Technology , 2020, 42(10): 1001-1006. |
[3] | WANG Lingzhi, LEI Zhenggang, ZHOU Hao, YU Chunchao, YANG Zhixiong, DUAN Shaoli, NIE Dong. Long-wave Infrared Hyperspectral Image Classification Based on K-means of Spatial-Spectral Features[J]. Infrared Technology , 2020, 42(4): 348-355. |
[4] | JIANG Xiaolin, WANG Zhishe. Visible and Infrared Image Fusion Based on Structured Group and Double Sparsity[J]. Infrared Technology , 2020, 42(3): 272-278. |
[5] | SU Hongchao, HU Ying, HONG Shaozhuang. Edge Detection Based on Characteristics of Infrared Image and K-means[J]. Infrared Technology , 2020, 42(1): 81-85. |
[6] | WU Tianai, HUANG Shucai, YUAN Zhiwei, WU Yunrong, FENG Hui. NSCT Combined with SVD for Infrared Dim Target Complex Background Suppression[J]. Infrared Technology , 2016, 38(9): 758-764. |
[7] | Parameter Extraction of Extrinsic Capacitance of MOSFET at 77 K Cryogenic Temperature[J]. Infrared Technology , 2013, (1): 9-15. |
[8] | ZHAO Jing-yuan, WANG Li-ming, LIU Bin. The Research of Infrared Image Sequence Enhancement Based on SVD Algorithm[J]. Infrared Technology , 2009, 31(1): 47-50. DOI: 10.3969/j.issn.1001-8891.2009.01.013 |
[9] | LI Hui, QIAN Yun-sheng, CHANG Ben-kang, LIU Lei, XIA Yang, LI Shi-yi. The Research of K Factor for Signal-to-noise Ratio of LLLIntensifier[J]. Infrared Technology , 2007, 29(8): 488-490. DOI: 10.3969/j.issn.1001-8891.2007.08.015 |
[10] | ZHENG Lie-hua, YIN Da-yi, FENG Xin. Application for Offsetting Image Rotation "K Mirror" in COCTS[J]. Infrared Technology , 2007, 29(1): 17-21. DOI: 10.3969/j.issn.1001-8891.2007.01.005 |
1. |
曹世超,刘晓营,梁舒. 基于双密度双树复小波变换的红外图像降噪算法. 邢台职业技术学院学报. 2022(03): 93-97 .
![]() |