Citation: | LI Xindong, WANG Juan, FENG Zongxin, SHI Hanbing, WANG Kun. Adaptive Gain Photoelectric Detection Circuit Design[J]. Infrared Technology , 2024, 46(1): 12-19. |
[1] |
FANG R, WANG C. Design and analysis of APD photoelectric detecting circuit[C]//Selected Papers of the Photoelectronic Technology Committee Conferences, SPIE, 2015, 9795: 547-552.
|
[2] |
齐靓. 某反坦克导弹激光模拟器的设计与实现[D]. 沈阳: 东北大学, 2012.
QI L. The Design and Implementation of an Anti-tank Missile Laser Simulator [D]. Shenyang: Northeastern University, 2012.
|
[3] |
ZHANG Y, GUO Y, HE G. Design of photoelectric amplification circuit for laser fuze[C]//IOP Conference Series: Earth and Environmental Science, 2021, 692(2): 022010.
|
[4] |
ZHU Likun, JIA Fangxiu, JIANG Xiaodong, et al. Photoelectric detection technology of laser seeker signals[J]. Journal of Systems Engineering and Electronics, 2019, 30(6): 1064-1073. DOI: 10.21629/JSEE.2019.06.02
|
[5] |
WANG L, ZHANG Y, LI H, et al. Study on long distance transmission technique of weak photocurrent signal in laser gas sensor[J]. Chinese Optics Letters, 2012, 10(4): 042802. DOI: 10.3788/col201210.042802
|
[6] |
XIE N, ZHANG Z, CHEN W. Design of signal conditioning circuit for photoelectric sensor[C]// 7th International Conference on Education, Management, Computer and Medicine (EMCM), 2017: 533-537.
|
[7] |
REN M Y, TIAN L, WANG W, et al. Design of pre-amplifiers for photoelectric detector[C]//Applied Mechanics and Materials, 2013, 380: 3308-3311.
|
[8] |
WANG L, ZHANG Y, LI H, et al. Study on long distance transmission technique of weak photocurrent signal in laser gas sensor[J]. Chinese Optics Letters, 2012, 10(4): 042802. DOI: 10.3788/col201210.042802
|
[9] |
KONG L, CHEN Y, Boon C C, et al. A wideband inductorless dB-linear automatic gain control amplifier using a single-branch negative exponential generator for wireline applications[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65(10): 3196-3206. DOI: 10.1109/TCSI.2018.2827065
|
[10] |
KO C T, KUAN T K, SHEN R P, et al. A 387.6 fs integrated jitter and-80dBc reference spurs ring based PLL with track-and-hold charge pump and automatic loop gain control in 7 nm FinFET CMOS[C]//Symposium on VLSI Circuits. IEEE, 2019: C164-C165.
|
[11] |
王涛, 蔡喜平, 刘洋, 等. 可见光通信自适应接收系统的实验研究[J]. 光通信技术, 2019, 43(2): 18-21.
WANG T, CAI X P, LIU Y, et al. Experimental study of adaptive receiving system for visible light communication[J]. Optical Communication Technology, 2019, 43(2): 18-21.
|
[12] |
张天宇, 贾方秀. 基于PSD窄脉冲激光信号检测放大电路噪声分析及参数匹配研究[J]. 现代电子技术, 2019, 42(10): 35-39.
ZHANG T Y, JIA F X. Noise analysis and parameter matching based on PSD[J]. Modern Electronic Technology, 2019, 42(10): 35-39.
|
[13] |
LI C Y, CHENG Z, CHEN F, et al. Design of a photoelectric detection circuit in particle analysis apparatus for clinical liquid sample[C]//Applied Mechanics and Materials, 2015, 696: 134-140.
|
[14] |
QIN J, CUI S, DAI J. Noise analysis and compensation strategy of photoelectric detection circuit[C]//Journal of Physics: Conference Series, 2020, 1601(2): 022047.
|
[15] |
LI X, RAO W, GENG D. Design and analysis of weak optical signal detection system based on photoelectric detection technology[J]. Journal of Nanoelectronics and Optoelectronics, 2018, 13(4): 458-466. DOI: 10.1166/jno.2018.2305
|
[16] |
HE L L, ZHANG Z, GE L F. A design of weak photoelectric signal acquisition and process system based on LabVIEW[J]. Electrical Measurement and Instrumentation, 2010, 47(534): 65-68.
|
[17] |
WU Zaiqun. Study on detection of weak signal by phase lock-in amplification[C]// 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 2017: 109-112.
|
[18] |
张书博, 王昌建. 具有抗干扰功能的激光测距电路的设计与实现[J]. 激光杂志, 2017, 38(12): 105-109.
ZHANG S B, WANG C J. Design and implementation of laser ranging circuit with anti-interference function[J]. Laser Magazine, 2017, 38(12): 105-109.
|
[19] |
ZHENG A L, ZHANG J, HUANG B Z. Stability analysis and design of a mono-pulse photoelectric detecting system[C]//Applied Mechanics and Materials, 2013, 389: 680-684.
|
[20] |
TAN Y Y, ZHANG H, ZHANG X J, et al. Design of low-noise receiving amplifier circuit for laser proximity fuze[C]//Advanced Materials Research, 2014, 926: 452-455.
|
[21] |
MENG X, YUAN H, WANG Y. Research on the construction method of photoelectric detection preamplifier circuit combined with single chip microcomputer technology[C]// IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), 2021: 516-520.
|
[22] |
WANG J, XIA K, LI T, et al. Self-powered silicon PIN photoelectric detection system based on triboelectric nanogenerator[J]. Nano Energy, 2020, 69: 104461. DOI: 10.1016/j.nanoen.2020.104461
|
[23] |
LI C, LU J, ZHAO Y, et al. Highly sensitive, fast response perovskite photodetectors demonstrated in weak light detection circuit and visible light communication system[J]. Small, 2019, 15(44): 1903599. DOI: 10.1002/smll.201903599
|
[24] |
YANG H, XU X, LUO M, et al. Design of quadrant photoelectric detection system and method of displacement calculation[J]. Optik, 2019, 199: 163335. DOI: 10.1016/j.ijleo.2019.163335
|
[25] |
KUANG X, FAN F, WANG T. A transimpedance amplifier with DC photocurrent rejection for infrared optical receiver[C]//IEEE 16th International Conference on Communication Technology (ICCT), 2015: 270-273.
|
[26] |
BAI J, WU T, SHEN F, et al. A novel design of analog signal power amplifier module for relay protection tester[C]// 5th International Conference on Machinery, Materials and Computing Technology, 2017: 1071-1076.
|
[27] |
ZHANG X, LI H, ZHANG S. Design and analysis of laser photoelectric detection sensor[J]. Microwave and Optical Technology Letters, 2021, 63(12): 3092-3099. DOI: 10.1002/mop.33011
|
[28] |
LI H, LEI Z. Study and analysis on a new optical detection design method for photoelectric detection target[J]. Sensor review, 2013, 33(4): 315-322.
|
[29] |
SHI A, LIANG Y. A design of signal processing circuit based on the duo-lateral PSD[C]// 5th International Conference on Intelligent Human-Machine Systems and Cybernetics. IEEE, 2013, 1: 255-258.
|
[30] |
Arthur B. Williams. 模拟滤波器与电子设计手册[M]. 路秋生译. 北京: 电子工业出版社, 2016.
Arthur B Williams. Analog Filter and Circuit Design Handbook [M]. Translation by Qiu-sheng L. Beijing: Electronic Industry Press, 2016.
|
[1] | ZHAO Yating, HAN Long, HE Huihuang, CHEN Chu. DSEL-CNN: Image Fusion Algorithm Combining Attention Mechanism and Balanced Loss[J]. Infrared Technology , 2025, 47(3): 358-366. |
[2] | CHEN Zhuang, HE Feng, HONG Xiaohang, ZHANG Qiran, YANG Yuyan. Embedded Platform IR Small-target Detection Based on Self-attention and Convolution Fused Architecture[J]. Infrared Technology , 2025, 47(1): 89-96. |
[3] | LI Xu, XIAO Zhiyun, JIANG Yedong, WANG Yazhou, SU Yu. Fault Detection and Identification of Multi-Source Insulators Based on Improved YOLOv7[J]. Infrared Technology , 2024, 46(11): 1325-1333. |
[4] | YUE Mingkai, QUAN Kangnan, ZHANG Cong, HAN Ziqiang. Research on Infrared Small Target Detection Algorithm Based on Improved YOLOv8[J]. Infrared Technology , 2024, 46(11): 1286-1292. |
[5] | GAO Yongqi, YUAN Zhixiang. Improved YOLOv5-based Underwater Infrared Garbage Detection Algorithm[J]. Infrared Technology , 2024, 46(9): 994-1005. |
[6] | WANG You, HAN Lixiang, FU Gui. Aerial Infrared Image Target Recognition Method Based on Improved YOLOv5s[J]. Infrared Technology , 2024, 46(7): 775-781, 801. |
[7] | GAO Mingming, LI Yuanzhou, MA Lei, NAN Jingchang, ZHOU Qianyi. YOLOv5-LR: A Rotating Object Detection Model for Remote Sensing Images[J]. Infrared Technology , 2024, 46(1): 43-51. |
[8] | SHEN Lingyun, LANG Baihe, SONG Zhengxun, WEN Zhitao. Remote Sensing Image Target Detection Method Based on CSE-YOLOv5[J]. Infrared Technology , 2023, 45(11): 1187-1197. |
[9] | KONG Songtao, XU Zhenze, LIN Xingyu, ZHANG Chunqiu, JIANG Guoqing, ZHANG Chunqing, WANG Kun. Infrared Thermal Imaging Defect Detection of Photovoltaic Module Based on Improved YOLO v5 Algorithm[J]. Infrared Technology , 2023, 45(9): 974-981. |
[10] | HU Yan, HU Haobing, ZHAO Yuhang, YUAN Zihao, SI Chengke. Infrared Thermal Imaging Low-Resolution and Small Pedestrian Target Detection Method[J]. Infrared Technology , 2022, 44(11): 1146-1153. |
1. |
李阳,丘建培,宋坤. 基于音视频多模态数据感知的智能巡检系统设计与应用. 现代信息科技. 2025(03): 189-193 .
![]() | |
2. |
周亚男. 光伏电站运维现状分析. 太阳能. 2024(01): 12-19 .
![]() | |
3. |
兰金江,曾学仁,方亮,田楠,王志强,刘继江. 基于无人机巡检的光伏缺陷检测与定位. 科技创新与应用. 2024(18): 14-19 .
![]() | |
4. |
任鹏,张哲,于洋. 基于边缘计算的县域分布式光伏智能巡检方法. 吉林电力. 2024(03): 28-31 .
![]() | |
5. |
温建国. 智能无人机红外巡检技术在光伏电站故障诊断中的应用. 中国战略新兴产业. 2024(26): 23-25 .
![]() | |
6. |
侯伟,陈雅,宋承继,刘强锋. 基于改进YOLOv5算法的无人机巡检图像智能识别方法. 微型电脑应用. 2024(09): 26-30+36 .
![]() | |
7. |
杨梅,马建新,陈炳森,赵泽政. 光伏电站无人机自动巡检及故障诊断技术应用. 计量与测试技术. 2024(09): 89-92 .
![]() | |
8. |
吴张宇,吴池莉,于慧铭,政幸男,张啸宇. 面向大规模光伏电站的无人机巡检路径规划策略. 综合智慧能源. 2024(11): 46-53 .
![]() | |
9. |
李峰,林维修,乐锋,许育燕,张斌. 一种基于无人机的光伏异常检测方法研究. 人工智能科学与工程. 2024(04): 86-92 .
![]() | |
10. |
陈大涛,高伟新,宇文磊县,赵良成,高永鑫,吴良,回峰. 基于无人机巡查的光伏电站检查系统设计. 集成电路应用. 2024(12): 72-75 .
![]() | |
11. |
曹瑞安. 基于AI机器视觉技术的新能源无人值守场站自动巡检方法. 电力大数据. 2024(11): 48-56 .
![]() | |
12. |
吕德利,王旋. 一种基于GPS定位技术的无人机智能光伏巡检系统. 科技创新与应用. 2023(06): 37-40 .
![]() | |
13. |
李德维. 光伏电站组件诊断中无人机智能巡检的应用. 光源与照明. 2023(01): 102-105 .
![]() | |
14. |
潘巧波,李昂,何梓瑜,唐梓彭. 数字化电厂智慧平台在光伏电站的应用. 黑龙江电力. 2023(02): 137-142 .
![]() | |
15. |
张永伟,李贵,马玉权,汪海波. 基于高精度快速故障识别的智能光伏视频巡检系统研究. 电力信息与通信技术. 2023(06): 73-78 .
![]() | |
16. |
范群. 智能集控平台在光伏发电站生产中的应用策略. 光源与照明. 2023(06): 142-144 .
![]() | |
17. |
白玉龙,孙茹洁,哈永华. 光伏电站自主巡检中的无人机视觉定位算法研究. 电子元器件与信息技术. 2023(05): 72-75 .
![]() | |
18. |
邓拥正,杨健. 浅谈无人机在光伏电站巡检中的应用. 红水河. 2023(04): 69-72 .
![]() | |
19. |
王佳文,朱永灿,王帅,李科锋. 航拍光伏组件图像的畸变校正方法研究. 湖南电力. 2023(04): 74-79 .
![]() | |
20. |
周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(12): 1161-1168 .
![]() | |
21. |
李智强. 基于无人机航拍摄影的变电站运行环境智能巡检方法. 电气技术与经济. 2023(10): 146-148 .
![]() | |
22. |
艾上美,周剑峰,张必朝,张涛,王红斌. 基于改进SSD算法的光伏组件缺陷检测研究. 智慧电力. 2023(12): 53-58 .
![]() | |
23. |
周登科,郭星辰,史凯特,汤鹏,郑开元,马鹏阁. 风电场无人机巡检红外叶片图像拼接算法. 红外技术. 2023(11): 1161-1168 .
![]() | |
24. |
孙霞,张洁,赵厚群,张坤乾,缪玉婷. Petri网在架空电缆无人机巡检方面的研究. 绥化学院学报. 2022(12): 139-142 .
![]() | |
25. |
李垚,魏文震,杨增健,赵鑫,吕健. 基于大数据的变电站在线智能巡视系统的研究. 电力大数据. 2022(11): 47-55 .
![]() |