LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.
Citation: LEI Yongchang, LI Jianlin, DONG Wei, ZHOU Jiading, HOU Likun, QIAN Kunlun. Redundant Object Damage and Prevention Method for Infrared Detectors[J]. Infrared Technology , 2023, 45(7): 790-797.

Redundant Object Damage and Prevention Method for Infrared Detectors

More Information
  • Received Date: March 24, 2022
  • Revised Date: May 10, 2022
  • Damage caused by foreign objects is a common risk faced by aerospace and aviation products, which has contributed to many incidents. The dynamic displacement of redundant objects can cause instantaneous circular image failure in infrared (IR) detectors, which interferes with the detection and tracking of small targets with low infrared radiation. Moreover, the dynamic displacement of redundant objects can collide with the infrared focal plane array, causing ineffective pixels and affecting the minimum resolvable temperature difference and operating range of the IR imager. The faulty device must be dismantled step-by-step to eliminate the macroparticles. Electron microscopy was used to test the redundant objects. The source and generation of redundant objects during infrared focal plane array manufacturing and application were determined. Mechanical and optical analyses show that macroparticles can damage the intensity distribution of the imaging beam on the focal plane. The time required for the displacement to pass through the field of view is less than 50 ms, the linearity is less than 1 mm, and the diffraction phenomenon is significant. Most of the circular images occurred in the Fraunhofer diffraction area. A fringe diffraction spot is produced if the 10 μm redundant object is close to the focal plane array.
  • [1]
    张扬, 宋晓晖, 顾菲, 等. 通信卫星热试验多余物控制方法研究[J]. 质量与可靠性, 2020(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYZ202004001.htm

    ZHANG Yang, SONG Xiaohui, GU Fei, et al. Research of remainder particle control method in telecommunication satellite thermal vacuum test[J]. Quality And Reliability, 2020(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYZ202004001.htm
    [2]
    张悦, 孙胜利, 刘会凯, 等. 航天器制造过程多余物控制机器视觉方法综述[J]. 计算机测量与控制, 2019, 27(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201902001.htm

    ZHANG Yue, SUN Shengli, LIU Huikai, et al. A survey of machine vision methods for control of remainders in intelligent manufacturing process of aerospace products[J]. Computer Measurement & Control, 2019, 27(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201902001.htm
    [3]
    王国涛, 王强, 韩笑, 等. 密封电子元器件多余物检测技术综述[J]. 机电元件, 2017, 37(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYG201701014.htm

    WANG Guotao, WANG Qiang, HAN Xiao, et al. Summarize of loose particles detection method for sealed electronic components[J]. Electromechanical Components, 2017, 37(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-JDYG201701014.htm
    [4]
    骆守俊, 彭晴晴, 郭亮. 红外探测器内部颗粒物对图像的影响[J]. 红外与激光工程, 2013, 42(3): 590-594. DOI: 10.3969/j.issn.1007-2276.2013.03.015

    LUO Shoujun, PENG Qingqing, GUO Liang. Influence of the particulates inside the infrared detector on the image[J]. Infrared and Laser Engineering, 2013, 42(3): 590-594. DOI: 10.3969/j.issn.1007-2276.2013.03.015
    [5]
    国防科工委军工产品质量管理标准化技术委员会. 多余物控制要求[S]. HB 7128-1994, [2004-12-01].

    Standardization Technical Committee for Quality Management of Military Products of the National Defense Science and Technology Commission. Foreign object control requirements[S]. HB 7128-1994, [2004-12-01].
    [6]
    国防科工委军工产品质量管理标准化技术委员会. 航天器多余物预防和控制要求[S]. QJ 2850-1996, [2004-12-01].

    Standardization Technical Committee for Quality Management of Military Products of the National Defense Science and Technology Commission. Requirements for the prevention and control of spacecraft debris[S]. QJ 2850-1996, [2004-12-01].
    [7]
    国家国防科技工业局. 航天产品多余物预防和控制[S]. QJ 2850A-2011, [2011-07-19].

    State Administration of Science, Technology and Industry for National Defence, PRC. Requirements for the prevention and control of spacecraft debris[S]. QJ 2850-1996, [2004-12-01].
    [8]
    国家国防科技工业局. 微波组件多余物预防和控制要求[S]. SJ 21073-2016, [2016-01-19].

    State Administration of Science, Technology and Industry for National Defence, PRC. Technical requirements for spilth[S]. SJ 21073-2016, [2016-01-19].
    [9]
    中国人民解放军总装备部. 多余物控制要求[S]. GJB 5296-2019, [2004-12-21].

    People's Liberation Army General Armaments Department. Foreign object control requirements[S]. GJB 5296-2019, [2004-12-21].
    [10]
    国家市场监督管理总局. 航天器多余物预防和控制要求[S]. GB/T 40539-2021, [2021-08-20].

    State Administration for Market Regulation. Requirements for the prevention and control of spacecraft debris[S]. GB/T 40539-2021, [2021-08-20].
    [11]
    中央军委装备发展部. 质量管理体系要求[S]. GJB 9001C-2017, [2017-05-18].

    Equipment Development Department of the Central Military Commission. Quality management systems requirements[S]. GJB 9001C-2017, [2017-05-18].
    [12]
    Hirsch J, Curcio C A. The spatial resolution capacity of human foveal Retina[J]. Vision Research, 1989, 29(9): 1095-1101. DOI: 10.1016/0042-6989(89)90058-8
    [13]
    TIAN Minbo, LIU Deling. Film Science and Technology Manual[M]. Beijing: China Machine Press, 1991: 175.
    [14]
    ZHANG Fenglin, SUN Xuezhu. Engineering Optics[M]. Tianjin: Tianjin University Press, 1988: 262, 265, 282.
    [15]
    CHEN Heng. Infrared Physics[M]. Beijing: National Defense Industry Press, 1985: 258-260.
    [16]
    姜俊, 舒鑫, 雍建华, 等. 金属切削毛刺形成与控制技术研究进展[J]. 工具技术, 2021, 55(7): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS202107001.htm

    JIANG Jun, SHU Xin, YONG Jianhua, et al. Development of metal cutting burr formation and control technology[J]. Toll Engineering, 2021, 55(7): 3-10. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJS202107001.htm
    [17]
    王龙, 汪刘应, 刘顾, 等. 基于单颗磨粒切削的硅片加工破碎损伤[J]. 光学精密工程, 2021, 11(29): 2632-2639. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202111012.htm

    WANG Long, WANG Liuying, LIU Gu, et al. Silicon wafer breakage damage based on single abrasive cutting[J]. Optics and Precision Engineering, 2021, 11(29): 2632-2639. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM202111012.htm
  • Related Articles

    [1]ZHANG Kai, LI Haiying, LIU Dong, ZHANG Yingxu, YUAN Shouzhang, LI Peiyuan, LI Hongfu, ZHAO Wenli, ZHA Yun, ZHAO Yusong. Research on Reliability Evaluation Model and Accelerated Aging Demonstration of Infrared Detector Assembly[J]. Infrared Technology , 2025, 47(6): 671-680.
    [2]SUN Hongsheng, CHEN Xiaoping, XIA Ming, CHEN Jun, HUANG Yibin, GAN Youyu, LI Shufen. Research Progress and Key Technology Analysis of Variable Cold Aperture Infrared Detector[J]. Infrared Technology , 2024, 46(4): 376-383.
    [3]YANG Xiaole, ZHOU Feng, SHI Manli, LIU Wei, LIU Yanjie, LIU Yiliang. Splicing Structure of Ultra-long Linear Infrared Detector[J]. Infrared Technology , 2023, 45(6): 567-574.
    [4]MA Xingzhao, TANG Libin, ZHANG Yuping, ZUO Wenbin, WANG Shanli, JI Rongbin. Research Progress of Silicon-based BIB Infrared Detector[J]. Infrared Technology , 2023, 45(1): 1-14.
    [5]ZHANG Hongfei, ZHU Xubo, LI Mo, YAO Guansheng, LYU Yanqiu. Research Progress of Mid-/Mid-Wavelength Dual-color Antimonide-based Infrared Detector[J]. Infrared Technology , 2022, 44(9): 904-911.
    [6]XIONG Xiong, DUAN Yu, HU Mingdeng, LI Ruiping, DU Yu, MAO Jianhong. Reliability Research for 640×512 Miniaturized IR Detector Dewar Assembly[J]. Infrared Technology , 2022, 44(1): 89-95.
    [7]WANG Jian, ZHANG Lei, ZENG Xin, DAI Fang, XU Chunye. Design of Integrated Image Signal Processing Chip for Infrared Detector[J]. Infrared Technology , 2021, 43(11): 1044-1048.
    [8]XU Shengya, DAI Liqun, SUN Qiyang, ZHANG Xu, XU Lina, ZHAO Yanhua. Experimental Measurement and Study of the Thermal Load of a Large-Format Infrared Detector Dewar[J]. Infrared Technology , 2018, 40(8): 739-742.
    [9]The Effect of Frosting on the Measurement of Thermal Load of Mini Metal Dewar[J]. Infrared Technology , 2007, 29(12): 724-729. DOI: 10.3969/j.issn.1001-8891.2007.12.011
    [10]Thermal Loss Analysis for the Dewar Assembly Coupling with the Micro-Stirling Cryocooler[J]. Infrared Technology , 2002, 24(1): 23-26. DOI: 10.3969/j.issn.1001-8891.2002.01.007

Catalog

    Article views (201) PDF downloads (88) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return