ZHANG Qiuming, LI Yunhong, LUO Xuemin, QU Haitao, SU Xueping, REN Jie, ZHOU Xiaoji. Electric Equipment Infrared Image Segmentation Method Based on Improved Chan-Vese Model[J]. Infrared Technology , 2023, 45(2): 129-136.
Citation: ZHANG Qiuming, LI Yunhong, LUO Xuemin, QU Haitao, SU Xueping, REN Jie, ZHOU Xiaoji. Electric Equipment Infrared Image Segmentation Method Based on Improved Chan-Vese Model[J]. Infrared Technology , 2023, 45(2): 129-136.

Electric Equipment Infrared Image Segmentation Method Based on Improved Chan-Vese Model

More Information
  • Received Date: October 06, 2021
  • Revised Date: November 09, 2021
  • To address the problems of poor infrared image segmentation and slow speed in the online monitoring system of power equipment, an improved infrared image segmentation algorithm based on the Chan-Vese model is proposed. First, by introducing the edge energy term, the local control ability of the model is enhanced and the contour shift is effectively suppressed. Second, a radial basis function is used to replace the traditional length regularization term, which simplifies the calculation. Subsequently, the initialization process is omitted by introducing internal energy items, which reduces the running time of the algorithm. After the experimental verification, the average DSC was 0.9808, the average value was 0.025, and the algorithm running time was 66.8% lower than the overall average of the other models. The improved Chan-Vese model segmentation algorithms DSC and RSE are better than the GAC-CV, CV-RSF, regional level set, and multiphase-CV model segmentation algorithms.
  • [1]
    赵洪山, 刘秉聪, 王龄婕, 等. 基于压缩感知的电力设备红外图像盲超分辨率方法[J]. 电网技术, 2022, 46(3): 1177-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202203036.htm

    ZHAO H S, LIU B C, WANG L J, et al. Blind super resolution method for infrared image of power equipment based on compressed sensing[J]. Power System Technology, 2022, 46(3): 1177-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS202203036.htm
    [2]
    曾军, 王东杰, 范伟, 等. 基于红外热成像的电气设备组件识别研究[J]. 红外技术, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1

    ZENG J, WANG D J, FAN W, et al. Research on component identification for electrical equipment based on infrared thermography[J]. Infrared Technology, 2021, 43(7): 679-687. http://hwjs.nvir.cn/article/id/58024112-8052-43d6-8a2d-dd2460dfa5e1
    [3]
    李志坚, 杨风暴, 高玉斌, 等. 基于多尺度高斯滤波和形态学变换的红外与其他类型图像融合方法(英文)[J]. 红外与毫米波学报, 2020, 39(6): 810-817. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202006021.htm

    LI Z J, YANG F B, GAO Y B, et al. Fusion method for infrared and other-type images based on the multi-scale Gaussian filtering and morphological transform[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 810-817. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH202006021.htm
    [4]
    王晓飞, 胡凡奎, 黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法[J]. 通信学报, 2020, 41(5): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB202005013.htm

    WANG X F, HU F K, HUANG S. Infrared image segmentation algorithm based on distribution information intuitionistic fuzzy c-means clustering[J]. Journal on Communications, 2020, 41(5): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB202005013.htm
    [5]
    邵磊, 张一鸣, 李季, 等. 基于改进的两维Otsu管道红外图像高温区域分割研究(英文)[J]. 光谱学与光谱分析, 2019, 39(5): 1637-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905055.htm

    SHAO L, ZHANG Y M, LI J, et al. Research on high temperature region segmentation of infrared pipeline image based on improve two-dimensional-Otsu[J]. Spectroscopy and Spectral Analysis, 2019, 39(5): 1637-1642. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201905055.htm
    [6]
    聂方彦, 李建奇, 张平凤, 等. 图像非广延高斯熵分割的阈值选取方法[J]. 激光与红外, 2020, 50(12): 1504-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012014.htm

    NIE F Y, LI J Q, ZHANG P F, et al. Threshold selection for image segmentation based on nonextensive Gaussian entropy[J]. Laser & Infrared, 2020, 50(12): 1504-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW202012014.htm
    [7]
    朱莉, 张晶, 傅应锴, 等. 基于多模态特征图融合的红外热图像目标区域提取算法[J]. 红外与毫米波学报, 2019, 38(1): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201901020.htm

    ZHU L, ZHANG J, FU Y K, et al. Infrared thermal image ROI extraction algorithm based on fusion of multi-modal feature maps[J]. Journal of Infrared and Millimeter Waves, 2019, 38(1): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201901020.htm
    [8]
    李唐兵, 胡锦泓, 周求宽. 基于Lévy飞行的改进飞蛾扑火算法优化红外图像分割[J]. 红外技术, 2020, 42(9): 846-854. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202009007.htm

    LI T B, HHU J H, ZHOU Q K. Improved Moth-flame optimization algorithm based on Lévy flight to optimize infrared image segmentation[J]. Infrared Technology, 2020, 42(9): 846-854. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202009007.htm
    [9]
    王硕禾, 巩方超, 古晓东, 等. 基于特征融合的变电设备类型及故障识别算法研究[J]. 铁道学报, 2021, 43(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202104014.htm

    WANG S H, GONG F C, GU X D et al. Research on types of substation equipment and fault identification algorithm based on feature fusion[J]. Journal of the China Railway Society, 2021, 43(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202104014.htm
    [10]
    赵庆生, 王雨滢, 王旭平, 等. 基于新型阈值选择方法的变电站红外图像分割[J]. 光学学报, 2019, 39(8): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908014.htm

    ZHAO Q S, WANG Y Y, WANG X P, et al. Substation infrared image segmentation based on novel threshold selection method[J]. Acta Optica Sinica, 2019, 39(8): 109-116. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201908014.htm
    [11]
    于晓, 周子杰, Kamil Ríha. 基于最小平均距离免疫算法的模糊红外图像分割(英文)[J]. 光谱学与光谱分析, 2018, 38(11): 3645-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201811059.htm

    YU X, ZHOU Z J, Kamil Ríha. Blurred infrared image segmentation using new immune algorithm with minimum mean distance immune field[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3645-3652. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201811059.htm
    [12]
    Houssein Essam H, Helmy Bahaa El-din, Oliva Diego, et al. A novel black widow optimization algorithm for multilevel thresholding image segmentation[J]. Expert Systems With Applications, 2021, 167: 114159.
    [13]
    KotaridisIoannis, Lazaridou Maria. Remote sensing image segmentation advances: a meta-analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 309-322.
    [14]
    周子杰, 张宝峰, 于晓. 基于神经免疫生长可免域网络的红外光谱图像分割算法(英文)[J]. 光谱学与光谱分析, 2021, 41(5): 1652-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202105059.htm

    ZHOU Z J, ZHANG B F, YU X. Infrared spectroscopic image segmentation based on neural immune network with growing immune field[J]. Spectroscopy and Spectral Analysis, 2021, 41(5): 1652-1660 https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202105059.htm
    [15]
    朱莉, 赵俊, 傅应锴, 等. 一种红外热图像目标区域分割的深度学习算法[J]. 西安电子科技大学学报, 2019, 46(4): 107-114, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201904015.htm

    ZHU L, ZHAO J, FU Y K, et al. Deep learning algorithm for the segmentation of the interested region of an infrared thermal image[J]. Journal of Xidian University, 2019, 46(4): 107-114, 121. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201904015.htm
    [16]
    黄鸿, 吕容飞, 陶俊利, 等. 基于改进U-Net++的CT影像肺结节分割算法[J]. 光子学报, 2021, 50(2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102009.htm

    HUANG H, LV R F, TAO J L, et al. CT image lung nodule segmentation algorithm based on improved U-Net++[J]. Acta Photonica Sinica, 2021, 50(2): 73-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202102009.htm
    [17]
    王珏, 张秀英, 蔡玉芳, 等. 联合小波变换和RSF模型的CT图像分割方法[J]. 光学学报, 2020, 40(21): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202021007.htm

    WANG J, ZHANG X Y, CAI Y F, et al. CT image segmentation method combining wavelet transform and RSF model[J]. Acta Optica Sinica, 2020, 40(21): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202021007.htm
    [18]
    Aldísio G Medeiros, Matheus T Guimarães, Solon A Peixoto, et al. A new fast morphological geodesic active contour method for lung CT image segmentation[J]. Measurement, 2019, 148: 1-13.
    [19]
    Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
    [20]
    何婷, 郭艳光, 辛春花. ACM选择系统结合改进Chan-Vese模型的自适应图像分割方法[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202002024.htm

    HE T, GUO Y G XIN C H. Adaptive image segmentation method using ACM selection system and improved Chan-Vese model[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(2): 165-173. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202002024.htm
    [21]
    赵晓理, 周浦城, 薛模根. 一种基于改进Chan-Vese模型的红外图像分割方法[J]. 红外技术, 2016, 38(9): 774-778. http://hwjs.nvir.cn/article/id/hwjs201609011

    ZHAO X L, ZHOU P C, XUE M G. A kind of infrared image segment method using improved Chan-Vese model[J]. Infrared Technology, 2016, 38(9): 774-778. http://hwjs.nvir.cn/article/id/hwjs201609011
  • Related Articles

    [1]WAN Xin, LIU Kun, CUI Changhao. Histogram Equalization Algorithm Based on Sobel Gradient and Its Application on Infrared Images[J]. Infrared Technology , 2024, 46(4): 452-459.
    [2]LU Quan, HUANG Lifeng, HU Mengzhu. SF6 Leakage Region Enhancement Algorithm Based on Improved HE[J]. Infrared Technology , 2024, 46(4): 437-442.
    [3]MA Qun, ZHAO Meirong, ZHENG Yelong, SUN Lin, NI Feng. Infrared Image Detail Enhancement Based on Adaptive Conditional Histogram Equalization[J]. Infrared Technology , 2024, 46(1): 52-60.
    [4]ZHANG Huan, CHEN Zhisheng. Multi-scale Auto-Corrected Bi-Histogram Equalization for Infrared Image Enhancement[J]. Infrared Technology , 2023, 45(11): 1207-1215.
    [5]LIU He, ZHAO Tiancheng, LI Jiashuai, YANG Daiyong, YUAN Xiaocui, XU Zhihao. Contrast Enhancement Method of SF6 Infrared Image Based on Tri-histogram Equalization Algorithm[J]. Infrared Technology , 2023, 45(10): 1118-1125.
    [6]YAN Zhe, JIANG Li, YANG Fan, LUO Zhibin, JIA Zan, ZHANG Wei, ZHU Hongyang, CHEN Ruzao, ZHU Guangming, GUO Xiaojun, LIU Mengran. Bi-Histogram Equalization Algorithm for Infrared Image Enhancement[J]. Infrared Technology , 2022, 44(9): 944-950.
    [7]ZHU Jiayi, YANG Hongshuang, HE Wei, WANG Weinan, SHA Yizhong, HUANG Xiaojiang, XU Zhenjie. Implementation of a Histogram Equalization Algorithm Based on Image Segmentation[J]. Infrared Technology , 2022, 44(6): 587-592.
    [8]LI Mu, ZHOU Ruijie, TIAN Zhejia. A Thermal Infrared Image Enhancement Method Based on Histogram[J]. Infrared Technology , 2020, 42(9): 880-885.
    [9]JI Shu-peng, DING Xiao-qing. Morphological Filters and Wavelet-based Histogram Equalization Image Enhancement for Weak Target Detection[J]. Infrared Technology , 2003, 25(4): 32-38. DOI: 10.3969/j.issn.1001-8891.2003.04.008
    [10]A DSP+FPGA Based Real-time Histogram Equalization System of Infrared Image[J]. Infrared Technology , 2002, 24(3): 15-19. DOI: 10.3969/j.issn.1001-8891.2002.03.004
  • Cited by

    Periodical cited type(5)

    1. 李鹏. 基于红外测温技术的农村配网设备运行监测研究. 中国新技术新产品. 2025(03): 127-129 .
    2. 樊慧文. 深度学习在输变电设备故障状态检测中的应用研究. 电工技术. 2025(02): 95-97+101 .
    3. 刘传洋,吴一全. 基于红外图像的电力设备识别及发热故障诊断方法研究进展. 中国电机工程学报. 2025(06): 2171-2196 .
    4. 李冰,杜喜英,王玉莹,翟永杰. 基于改进YOLOv8n的变电设备红外图像实例分割算法. 电子测量技术. 2024(10): 151-159 .
    5. 佟忠正,孙旸子. 基于U-Net网络的电力设备巡检图像增强模型及其自动控制研究. 自动化与仪表. 2024(11): 79-82+91 .

    Other cited types(1)

Catalog

    Article views (179) PDF downloads (48) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return