WANG Guiquan, XU Zhiwen, DUAN Yongjin, SHI Haokun, JIANG Xuke, LI Yansheng, ZHANG Yuxuan, ZHANG Jie. An Infrared Micro Scanner Measurement and Calibration Method Based on Image Processing[J]. Infrared Technology , 2022, 44(9): 964-971.
Citation: WANG Guiquan, XU Zhiwen, DUAN Yongjin, SHI Haokun, JIANG Xuke, LI Yansheng, ZHANG Yuxuan, ZHANG Jie. An Infrared Micro Scanner Measurement and Calibration Method Based on Image Processing[J]. Infrared Technology , 2022, 44(9): 964-971.

An Infrared Micro Scanner Measurement and Calibration Method Based on Image Processing

More Information
  • Received Date: November 18, 2021
  • Revised Date: December 15, 2021
  • In infrared imaging systems, in which the core is an infrared focal plane array, a microscanner can enhance the spatial resolution of the entire system. To test microscanners, this study developed a measurement and calibration method based on image processing and built a system to measure and calibrate microscanners. Using a microscanner as a test subject, the test results indicate that the proposed method has a significant effect on the measurement accuracy, repetition accuracy, and uncertainty. The method can provide technical support for the design and manufacture of microscanners.
  • [1]
    Bagavathiappan S, Lahiri B B, Saravanan T, et al. Infrared thermography for condition monitoring–a review[J]. Infrared Physics & Technology, 2013, 60: 35-55.
    [2]
    Kogure S, Inoue K, Ohmori T, et al. Infrared imaging of an A549 cultured cell by a vibrational sum-frequency generation detected infrared super resolution microscope[J]. Optics Express, 2010, 18(13): 13402-13406. DOI: 10.1364/OE.18.013402
    [3]
    Lanfrey D B, Trinolet P, Pistone F, et al. New IR detectors with small pixel pitch and high operating temperature[C]//Proc. of SPIE, 2010, 7854: 78540M.
    [4]
    吕侃, 王世勇. 超分辨率技术在红外微扫描中的应用[J]. 电子设计工程, 2011, 19(13): 166-169. DOI: 10.3969/j.issn.1674-6236.2011.13.050

    LV Kan, WANG Shiyong. Application of super-resolution techniques in infrared micro-scanning[J]. Electronic Design Engineering, 2011, 19(13): 166-169. DOI: 10.3969/j.issn.1674-6236.2011.13.050
    [5]
    张良, 仇振安, 杨小儒, 等. 红外系统微扫描技术研究[J]. 激光与光电子学进展, 2012, 49(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201204024.htm

    ZHANG Liang, QIU Zhen'an, YANG Xiaoru, et al. Research of infrared micro-scanning technology[J]. Laser & Optoelectronics Progress, 2012, 49(4): 042302 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201204024.htm
    [6]
    吴新社, 邓芳轶, 陈敏, 等. 旋转式红外微扫描器研制[J]. 红外与毫米波学报, 2011, 30(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103017.htm

    WU Xinshe, DENG Fangyi, CHEN Min, et al. Development of rotary infrared micro-scanner[J]. Journal of Infrared and Millimeter Waves, 2011, 30(3): 263-267. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201103017.htm
    [7]
    王学伟, 李珂, 王世立. 红外成像系统微扫描成像重建算法研究[J]. 光电工程, 2012, 39(12): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201212023.htm

    WANG Xuewei, LI Ke, WANG Shili. Microscanning reconstruction algorithm for IR imaging system[J]. Opto-Electronic Engineering, 2012, 39(12): 122-126. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201212023.htm
    [8]
    代少升, 张德州, 崔俊杰, 等. 基于微扫描的红外超分辨率成像系统的设计[J]. 半导体光电, 2017, 38(1): 103-106, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201701026.htm

    DAI Shaosheng, ZHANG Dezhou, CUI Junjie, et al. Design of infrared super-resolution imaging system based on micro-scanning[J]. Semiconductor Optoelectronics, 2017, 38(1): 103-106, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201701026.htm
    [9]
    黄燕, 沈飞, 黄整章, 等. 压电式高精度位移微扫描控制系统设计[J]. 光学精密工程, 2016, 24(10s): 454-460.

    HUANG Yan, SHEN Fei, HUANG Zhengzhang, et al. Micro-scanning control system design for piezoelectric high-precision displacement[J]. Editorial Office of Optics and Precision Engineering, 2016, 24(10s): 454-460.
    [10]
    王忆锋, 侯辉, 冯雪艳. 红外焦平面器件微扫描技术的发展[J]. 红外技术, 2013, 35(12): 751-758. http://hwjs.nvir.cn/article/id/hwjs201312002

    WANG Yifeng, HOU Hui, FENG Xueyan, Development of microscan techniques in infrared focal plane array[J]. Infrared Technology, 2013, 35(12): 751-758. http://hwjs.nvir.cn/article/id/hwjs201312002
    [11]
    王林波, 王延杰, 邸男, 等. 基于几何特征的圆形标志点亚像素中心定位[J]. 液晶与显示, 2014, 29(6): 1003-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201406024.htm

    WANG Linbo, WANG Yanjie, DI Nan, et al. Subpixel location of circle target center based on geometric features[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(6): 1003-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YJYS201406024.htm
    [12]
    梁智滨, 吴鹏飞, 李灵巧, 等. 基于改进Zernike矩和均值漂移的插针位置检测方法[J]. 桂林电子科技大学学报, 2021, 41(4): 305-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202104008.htm

    LIANG Zhibin, WU Pengfei, LI Lingqiao, et al. Pin position detection based on improved Zernike moment and mean shift[J]. Journal of Guilin University of Electronic Technology, 2021, 41(4): 305-311. https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202104008.htm
    [13]
    田光宝, 王见, 王博文. 单目相机非合作目标提取及位姿检测[J]. 红外与激光工程, 2021, 50(12): 20210166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112050.htm

    TIAN Guangbao, WANG Jian, WANG Bowen. Monocular camera non-cooperative target extraction and pose detection[J]. Infrared and Laser Engineering, 2021, 50(12): 20210166. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ202112050.htm
    [14]
    Ghosal S, Mecrotra R. Orthogonal moment operator for subpixel edge detection[J]. Pattern Recognition, 1993, 26(2): 295-306.
    [15]
    卢达, 白静芬, 林繁涛, 等. 基于映射常数的动态量值不确定度评定方法[J]. 电测与仪表, 2022, 59(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202206008.htm

    LU Da, BAI Jingfen, LIN Fantao, et al. Evaluation of uncertainty for dynamic values based on mapping constants[J]. Electrical Measurement & Instrumentation, 2022, 59(6): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DCYQ202206008.htm
    [16]
    中国国家标准化管理委员会. 测量不确定度评定和表示: GB/T 27418-2017[S]. 北京: 中国标准出版社, 2018.

    Standard Administration. Guide to Evaluation and Expression of Uncertainty in Measurement: GB/T 27418-2017[S]. Beijing: Standards Press of China, 2018.
  • Related Articles

    [1]LI Xiangrong, SUN Lihui. Multiscale Infrared Target Detection Based on Attention Mechanism[J]. Infrared Technology , 2023, 45(7): 746-754.
    [2]LONG Zhiliang, DENG Yueming, WANG Runmin, DONG Jun. Infrared and Visible Image Fusion Based on Saliency Detection and Latent Low-Rank Representation[J]. Infrared Technology , 2023, 45(7): 705-713.
    [3]ZHOU Jinjie, JI Li, ZHANG Qian, ZHANG Baohui, YUAN Xilin, LIU Yanqing, YUE Jiang. Multiscale Infrared Object Detection Network Based on YOLO-MIR Algorithm[J]. Infrared Technology , 2023, 45(5): 506-512.
    [4]HU Jiahui, ZHAN Weida, GUI Tingting, SHI Yanli, GU Xing. Infrared Image Enhancement Method Based on Multiscale Weighted Guided Filtering[J]. Infrared Technology , 2022, 44(10): 1082-1088.
    [5]CHEN Wenyi, YANG Chengxun, YANG Hui. Multiscale Retinex Infrared Image Enhancement Based on the Fusion of Guided Filtering and Logarithmic Transformation Algorithm[J]. Infrared Technology , 2022, 44(4): 397-403.
    [6]YE Kuntao, LI Wen, SHU Leilei, LI Sheng. Infrared and Visible Image Fusion Method Based on Improved Saliency Detection and Non-subsampled Shearlet Transform[J]. Infrared Technology , 2021, 43(12): 1212-1221.
    [7]LI Chuandong, XU Wangming, WU Shiqian. Real-Time Pedestrian Detection Based on the Weak Saliency Map in Thermal Infrared Images[J]. Infrared Technology , 2021, 43(7): 658-664.
    [8]JIAO Anbo, HE Miao, LUO Haibo. Research on Significant Edge Detection of Infrared Image Based on Deep Learning[J]. Infrared Technology , 2019, 41(1): 72-77.
    [9]LIU Hui, SHI Xiaolong. Improved GrabCut Segmentation Based on Salience and Superpixels[J]. Infrared Technology , 2018, 40(1): 55-61.
    [10]FAN Ming-zhe, WANG Lu-ping, ZHANG Lu-ping. Regional Detection Algorithm Based on Double Error Reconstruction[J]. Infrared Technology , 2015, 37(11): 962-969.
  • Cited by

    Periodical cited type(3)

    1. 靳铁柱,刘生彦. 改进背景减法下人体运动模糊图像检测仿真. 计算机仿真. 2025(03): 304-308 .
    2. 王封疆,王梦飞,周杰. 基于CHEBWO的多目标棉田图像增强算法. 石河子大学学报(自然科学版). 2024(04): 505-513 .
    3. 张海庆. 不同天气条件下光学图像清晰度实时增强研究. 自动化与仪器仪表. 2024(11): 39-42+47 .

    Other cited types(1)

Catalog

    Article views (107) PDF downloads (24) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return