Citation: | LYU Yonglin, ZHENG Wanxiang, LI Rujie, ZHANG Youliang, TANG Yingjuan, ZHANG Weitao, CHEN Yijun, WANG Guiquan, LI Yansheng, WANG Qiaofang. Optical Constants and Thickness Testing of Films Based on Reflection Spectroscopy[J]. Infrared Technology , 2024, 46(8): 965-973. |
The optical constant (refractive index, extinction coefficient) and thickness of the film determine the optical properties of the coated part, so mastering the optical constant and thickness of the film according to the actual conditions is an important part of the film structure design and performance optimization. In this study, a Fourier transform infrared spectrometer was used to measure the reflectance spectrum curve of the sample. The target optimization function was constructed with the help of a different dispersion model, the simplex optimization algorithm was fitted to the reflectance spectrum curve, and the optical constant and thickness of the thin film were obtained using the target optimization function. The fitted optical constant and thickness of the thin film agree with the ellipsometer test results. When the inverted optical parameters and thickness of the thin film were incorporated into the theoretical reflectance calculation model and the reflectance curve obtained by the theoretical calculation model was in good agreement with the experimental test curve, the maximum relative error of the refractive index was less than 1.8%, the maximum relative error of thickness was less than 0.4%, and the maximum relative error of reflectance was less than 2%. This method only requires the measurement of the reflectance spectrum curve, and the optical parameters of the thin film can be obtained through calculations. This method has simple testing calculations, high accuracy, and a wide application range. This has important practical applications in structural design, optimization, and machining of optical thin films.
[1] |
乔明霞. 薄膜光学常数和厚度的透射光谱法测定研究[D]. 成都: 四川大学, 2006.
QIAO Mingxia, Study on Determination of Optical Constants and Thickness of Thin Films by Transmission Spectrum Method[D]. Chengdu: Sichuan University, 2006.
|
[2] |
乔明霞, 黄伟, 张彬. YbF3和ZnS薄膜的折射率和厚度的分光光度法测定[J]. 激光杂志, 2006, 27(1): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ200601012.htm
QIAO Mingxia, HUANG Wei, ZHANG Bin. Determination of refractive index and thickness of YbF3 and ZnS thin films from spectrophotometric method[J]. Laser Journal, 2006, 27(1): 24-25. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ200601012.htm
|
[3] |
李国龙, 钟景明, 王立惠, 等. 反射光谱拟合法确定聚合物半导体薄膜光学常数和厚度[J]. 激光与光电子学进展, 2016, 53(4): 043101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201604036.htm
LI Guolong, ZHONG Jingming, WANG Lihui, et al. Determination of optical constants and thickness of polymer semiconductor thin film with reflectivity fitting method[J]. Laser & Optoelectronics Progress, 2016, 53(4): 043101. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201604036.htm
|
[4] |
杨鹏, 徐志凌, 徐雷. 反射干涉光谱测量固体薄膜的光学常数和厚度[J]. 光谱学与光谱分析, 2000, 20(3): 283-285. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200003008.htm
YANG Peng, XU Zhiling, XU Lei. A reflection interference method for determining optical constants and thickness of a thin solid film[J]. Spectroscopy and Spectral Analysis, 2000, 20(3): 283-285. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN200003008.htm
|
[5] |
杨百愚, 武晓亮, 王翠香, 等. 基于多项式求根的双厚度透射率模型确定光学常数[J]. 红外技术, 2023, 45(1): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202309009.htm
YANG Baiyu, WU Xiaoliang, WANG Cuixiang, et al. Determination of optical constants by double thickness transmittance model based on polynomial root[J]. Infrared Technology, 2023, 45(1): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS202309009.htm
|
[6] |
李全葆, 宋炳文, 魏天衢. Hg1-xCdxTe光学常数测量[J]. 红外技术, 1991, 13(5): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS199105004.htm
LI Quanbao, SONG Bingwen, WEI Tianqu. The measurement of optical constants of Hg1-xCdxTe[J]. Infrared Technology, 1991, 13(5): 17-20. https://www.cnki.com.cn/Article/CJFDTOTAL-HWJS199105004.htm
|
[7] |
张奇志. 单层SiNx衰减型相移掩膜研究[D]. 成都: 四川大学, 2001.
ZHANG Qizhi. Study of the Attenuatal Phase Motion Coating of SiNx[D]. Chengdu: Sichuan University, 2001.
|
[8] |
Jakopic G, Par G, Papoueek W. Unified analytical inversion of reflectometric and ellipsometric data of absorbing media[J]. Appl. Opt. , 2000, 39(16): 2727-2732. DOI: 10.1364/AO.39.002727
|
[9] |
陈燕平, 余飞鸿. 薄膜厚度和光学常数的主要测试方法[J]. 光学仪器, 2006, 28(6): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ200606017.htm
CHEN Yanping, YU Feihong. Test methods for film thickness and optical constants[J]. Optical Instruments, 2006, 28(6): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYQ200606017.htm
|
[10] |
李江, 唐敬友, 裴旺, 等. 椭偏精确测定透明衬底上吸收薄膜的厚度及光学常数[J]. 物理学报, 2015, 64(11): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201511010.htm
LI Jiang, TANG Jinyou, PEI Wang, et al. Accurate determination of thickness value and optical constants of absorbing thin films on opaque substrates with spectroscopic ellipsometry[J]. Acta Physica Sinica, 2015, 64(11): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201511010.htm
|
[11] |
杨天新, 邹豪, 王雷, 等. 棱镜耦合法确定条形波导的渐变折射率分布[J]. 中国激光, 2010, 37(3): 689-695. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201003019.htm
YANG Tianxin, ZOU Hao, WANG Lei, et al. Determining the graded-index profiles of channel wave guides by prism coupling method[J]. Chinese Journal of Lasers, 2010, 37(3): 689-695. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201003019.htm
|
[12] |
王贵全, 张锦荣, 邵毅, 等. 基于透射光谱的类金刚石膜光学参数反演[J]. 红外技术, 2021, 43(5): 473-477. http://hwjs.nvir.cn/article/id/916a8eda-7b0a-4936-a8e2-e659b75abb96
WANG Guiquan, ZHANG Jinrong, SHAO Yi, et al. Calculation of optical parameters of diamond-like carbon film based on transmission spectrum[J]. Infrared Technology, 2021, 43(5): 473-477. http://hwjs.nvir.cn/article/id/916a8eda-7b0a-4936-a8e2-e659b75abb96
|
[13] |
夏志林, 薛亦渝, 赵利, 等. 基于包络线法的薄膜光学常数分析[J]. 武汉理工大学学报: 信息与管理工程版, 2003, 25(5): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC200305021.htm
XIA Zhilin, XUE Yiyu, ZHAO Li, et al. Analysis of thin film's optical parameters based on the envelope method[J]. Journal of Wuhan University of Technology, Information & Management Engineering, 2003, 25(5): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-WHQC200305021.htm
|
[14] |
李凯朋, 王多书, 李晨, 等. 光学薄膜参数测量方法研究[J]. 红外与激光工程, 2015, 44(3): 1048-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201503047.htm
LI Kaipeng, WANG Duoshu, LI Chen, et al. Study on optical thin film parameters measurement method[J]. Infrared and Laser Engineering, 2015, 44(3): 1048-1052. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ201503047.htm
|
[15] |
Laaziza Y, Bennouna A, Chadburn N. Optical characterization of low optical thickness thin films from transmittance and back reflectance measurements[J]. Thin Solid Films, 2000, 372: 149-155. DOI: 10.1016/S0040-6090(00)00997-4
|
[16] |
侯典心, 路远, 宋福印. 基于全光谱拟合法的VO2薄膜光学常数计算[J]. 红外技术, 2017, 39(3): 243-249. http://hwjs.nvir.cn/article/id/hwjs201703008
HOU Dianxin, LU Yuan, SONG Fuyin. Optical constants of VO2 thin films based on whole optical spectrum fitting[J]. Infrared Technology, 2017, 39(3): 243-249. http://hwjs.nvir.cn/article/id/hwjs201703008
|
[17] |
闫威. 某些非线性色散方程的确定性与不确定性[D]. 广州: 华南理工大学, 2011: 28-35.
YAN Wei. Certainty and Uncertainty of Some Nonlinear Dispersion Equation[D]. Guangzhou: South China University of Technology, 2011.
|
[18] |
狄韦宇. 晶圆片薄膜光学常数和厚度的反射光谱法测定研究[D]. 杭州: 中国计量大学, 2019.
DI Weiyu. Determination of Optical Constants and Thick of Wafer Film by Reflectance Spectrum[D]. Hangzhou: China Jiliang University, 2019.
|
[19] |
徐均琪, 冯小利. 多层薄膜光学常数的椭偏法研究[J]. 光电工程, 2009, 36(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200902008.htm
XU Junqi, FENG Xiaoli. Optical constants of multi-layer thin films investigated by spectroscopic ellipsometry[J]. Opto-Electronic Engineering, 2009, 36(2): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC200902008.htm
|
[20] |
余平, 张晋敏. 椭偏仪的原理和应用[J]. 合肥学院学报: 自然科学版, 2007, 17(1): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HFXZ200701023.htm
YU Ping, ZHANG Jinmin. The principle and application of ellipso-metery[J]. Journal of Hefei University: Natural Sciences Edition, 2007, 17(1): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-HFXZ200701023.htm
|
[1] | YANG Baiyu, WU Xiaoliang, WANG Cuixiang, WANG Weiyu, LI Lei, FAN Qi, LIU Jing, XU Cuilian. Determination of Optical Constants of Transparent Solids Based on Double Thickness Transmittance Model of Polynomial Root[J]. Infrared Technology , 2023, 45(9): 969-973. |
[2] | YANG Baiyu, WU Xiaoliang, WANG Cuixiang, WANG Weiyu, LI Lei, FAN Qi, LIU Jing. Determination of Optical Constants by Double Thickness Transmittance Model Based on Polynomial Root[J]. Infrared Technology , 2023, 45(1): 91-94. |
[3] | WANG Guiquan, ZHANG Jinrong, SHAO Yi, ZHENG Wanxiang, TANG Yingjuan, HU Zhong, JIANG Xinping, LI Yansheng, LI Wei, WANG Qiaofang, ZI Zhenghua. Calculation of Optical Parameters of Diamond-like Carbon Film Based on Transmission Spectrum[J]. Infrared Technology , 2021, 43(5): 473-477. |
[4] | CHENG Haijuan, YANG Weisheng, CAI Yi, YU Xiaohui, LI Rujie, WANG Ke, ZHAO Jinsong, WANG Lingxue. High-Performance LWIR Antireflective Films Fabrication on Ge Substrate Using LaF3 as Low Refractive Index Material[J]. Infrared Technology , 2020, 42(8): 758-762. |
[5] | HOU Dianxin, LU Yuan, SONG Fuyin. Optical Constants of VO2 Thin Films Based on Whole Optical Spectrum Fitting[J]. Infrared Technology , 2017, 39(3): 243-249. |
[6] | SUN Xiang-le, SUN Qian, SUN Jin-ni, WANG Yi-feng, YU Lian-jie, LIU Li-ming. A Method of Improving the Thickness Uniformity of Thin Film Deposited by Magnetron Sputtering[J]. Infrared Technology , 2012, 34(5): 265-267. DOI: 10.3969/j.issn.1001-8891.2012.05.004 |
[7] | SONG Li-yuan, TANG Li-bin, JI Rong-bin, LIU Xin-jin, CHEN Xue-mei, XUE Jing-wei, ZHUANG Ji-sheng, WANG Chong, YANG Yu. Properties of Intrinsic and Aluminum-doped ZnO Thin Films[J]. Infrared Technology , 2012, 34(5): 256-259. DOI: 10.3969/j.issn.1001-8891.2012.05.002 |
[8] | YU Lian-jie, SHI Yan-li, DENG Gong-rong, LI Xiong-jun, YANG Li-li, HE Wen-jin. The Research on Photoelectrical Properties of Amorphous HgTe Thin Films[J]. Infrared Technology , 2011, 33(4): 190-194. DOI: 10.3969/j.issn.1001-8891.2011.04.002 |
[9] | Growth and Thickness Uniformity Research of Amorphous MCT Films under Different Target Spacings[J]. Infrared Technology , 2011, 33(1): 13-16. DOI: 10.3969/j.issn.1001-8891.2011.01.004 |
[10] | Physics Applications of CMR Thin Film[J]. Infrared Technology , 2004, 26(3): 53-62. DOI: 10.3969/j.issn.1001-8891.2004.03.013 |
1. |
马庆禄,汪曦洪,马恋,段学锋. 隧道内不均匀照度下无人驾驶视觉融合感知方法. 应用光学. 2025(01): 89-101 .
![]() | |
2. |
段锦,张昊,宋靖远,刘举. 深度学习偏振图像融合研究现状. 红外技术. 2024(02): 119-128 .
![]() | |
3. |
陈锦妮,陈宇洋,李云红,拜晓桦. 基于结构与分解的红外光强与偏振图像融合. 红外技术. 2023(03): 257-265 .
![]() | |
4. |
张哲卿,朱志宇,魏莱,古静,顾健,臧旭. 复杂海面背景下船舶红外偏振图像融合方法. 电光与控制. 2023(07): 68-72 .
![]() | |
5. |
张媛,陆小妍,郭群,邱建博,缪正飞. 基于主成分分析和双树复小波变换的CT和MRI图像融合改进算法研究. 中国医学装备. 2022(04): 7-12 .
![]() | |
6. |
王晓娜,潘晴,田妮莉. 基于NSST-DWT-ICSAPCNN的多模态图像融合算法. 红外技术. 2022(05): 497-503 .
![]() | |
7. |
田立凡,杨莘,梁佳明,吴谨. 基于SGWT和多显著性的红外与可见光图像融合. 红外技术. 2022(07): 676-685 .
![]() | |
8. |
安晓东,李亚丽,王芳. 汽车驾驶辅助系统红外与可见光融合算法综述. 计算机工程与应用. 2022(19): 64-75 .
![]() | |
9. |
刘立群,顾任远,周煜博,火久元. 多尺度分解双寻优策略SPCNN的果园苹果异源图像融合模型. 农业工程学报. 2022(17): 158-167 .
![]() | |
10. |
贺兴容,龚奕宇,范松海,吴天宝,刘益岑,刘小江. 基于帧差检测技术与区域特征的红外与可见光图像融合算法. 现代电子技术. 2019(01): 57-61 .
![]() |