ZNANG Junlin, SHI Dongyang, YANG Huimin, NIE Ling, LIU Tianguang, WU Zhengping. Image Defogging Algorithm Based on Limited Light Value and Transmittance Correction[J]. Infrared Technology , 2023, 45(6): 613-621.
Citation: ZNANG Junlin, SHI Dongyang, YANG Huimin, NIE Ling, LIU Tianguang, WU Zhengping. Image Defogging Algorithm Based on Limited Light Value and Transmittance Correction[J]. Infrared Technology , 2023, 45(6): 613-621.

Image Defogging Algorithm Based on Limited Light Value and Transmittance Correction

More Information
  • Received Date: November 06, 2022
  • Revised Date: February 14, 2023
  • In this study, an image demist algorithm based on limited light value and transmittance correction is proposed. The aim of the study was to address the issues of color distortion in the demist image obtained by dark channel prior demist algorithm when the filtering window is small, error in the selection of introduction factor and calculation of the transmittance of the bright area, and weak anti-noise performance of the demist image. First, the upper threshold of atmospheric light value A was set. Second, the best introduction factor was obtained by establishing the corresponding relationship between the introduction factor and structural similarity. On the basis of introducing the tolerance mechanism, the transmission optimization method was further proposed. Finally, based on the proposed defogging algorithm, a Gaussian filtering algorithm was incorporated, and the brightness of the defogging image was adjusted to improve the visualization effect. The simulation results showed that the PSNR and SSIM values and entropy value of the image obtained by the proposed algorithm were 9.9964 dB, 8.57%, and 0.3732 higher than those before the improvement, respectively; thus, the effectiveness and superiority of the proposed algorithm were verified.
  • [1]
    Arif Z H, Mahmoud M A, Abdulkareem K H, et al. Comprehensive review of machine learning(ML) in image defogging: taxonomy of concepts, scenes, feature extraction, and classification techniques[J]. IET Image Processing, 2022, 16(2): 289-310. DOI: 10.1049/ipr2.12365
    [2]
    王昊昱, 何明枢. 基于改进暗通道算法的红外图像去雾[J]. 红外技术, 2022, 44(8): 875-881. http://hwjs.nvir.cn/article/id/3069d73a-bcfb-4116-85fc-38c5b62163af

    WANG Haoyu, HE Mingshu. Infrared image defogging based on improved dark channel algorithm[J]. Infrared Technology, 2022, 44(8): 875-881. http://hwjs.nvir.cn/article/id/3069d73a-bcfb-4116-85fc-38c5b62163af
    [3]
    王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX202006001.htm

    WANG Daolei, ZHANG Tianyu. Overview and analysis of image defogging algorithms[J]. Journal of Graphics, 2020, 41(6): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-GCTX202006001.htm
    [4]
    张宝山, 杨燕, 陈高科, 等. 结合直方图均衡化和暗通道先验的去雾算法[J]. 传感器与微系统, 2018, 37(3): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201803044.htm

    ZHANG Baoshan, YANG Yan, CHEN Gaoke, et al. Defogging algorithm combining histogram equalization and dark channel priori[J]. Sensors and Microsystems, 2018, 37(3): 148-152. https://www.cnki.com.cn/Article/CJFDTOTAL-CGQJ201803044.htm
    [5]
    韦春苗, 徐岩, 李媛. 基于小波变换的迭代融合去雾算法[J]. 激光与光电子学进展, 2021, 58(20): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202120025.htm

    WEI Chunmiao, XU Yan, LI Yuan. Iterative fusion defogging algorithm based on wavelet transform[J]. Progress in Laser and Optoelectronics, 2021, 58 (20): 243-251. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202120025.htm
    [6]
    CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198. DOI: 10.1109/TIP.2016.2598681
    [7]
    REN W, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C]//European Conference on Computer Vision, 2016: 154-169.
    [8]
    Hassan N, Ullah S, Bhatti N, et al. A cascaded approach for image defogging based on physical and enhancement models[J]. Signal, Image and Video Processing, 2020, 14(5): 867-875. DOI: 10.1007/s11760-019-01618-x
    [9]
    Sharma N, Kumar V, Singla S K. Single image defogging using deep learning techniques: past, present and future[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4449-4469. DOI: 10.1007/s11831-021-09541-6
    [10]
    Singh S, Baba A M, Anwar M, et al. Visibility improvement in hazy conditions via a deep learning based image fusion approach[C]// International Conference on Advances in Computing and Data Sciences, 2021: 410-419.
    [11]
    陈永, 郭红光, 艾亚鹏. 基于双域分解的多尺度深度学习单幅图像去雾[J]. 光学学报, 2020, 40(2): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202002008.htm

    CHEN Yong, GUO Hongguang, AI Yapeng. Multi-scale deep learning single image defogging based on dual domain decomposition[J]. Acta Optica Sinica, 2020, 40(2): 71-82. https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB202002008.htm
    [12]
    YANG Y, LONG W, LI Y, et al. Image defogging based on amended dark channel prior and 4‐directional L1 regularisation[J]. IET Image Processing, 2021, 15(11): 2454-2477.
    [13]
    HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
    [14]
    Gibson K B, Vo D T, Nguyen T Q. An investigation of dehazing effects on image and video coding[J]. IEEE Transactions on Image Processing, 2011, 21(2): 662-673.
    [15]
    LONG C, Bao-long G U O, JUAN B I, et al. Algorithm of single image fog removal based on joint bilateral filter[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(4): 19-23.
    [16]
    HE K, SUN J, TANG X. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(6): 1397-1409.
    [17]
    MENG G, WANG Y, DUAN J, et al. Efficient image dehazing with boundary constraint and contextual regularization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2013: 617-624.
    [18]
    JIANG J G, HOU T F, QI M B. Image dehazing algorithm based on dark primary color prior[J]. Journal of Circuits and Systems, 2011, 16(2): 7-12.
    [19]
    LING Z, GONG J, FAN G, et al. Optimal transmission estimation via fog density perception for efficient single image defogging[J]. IEEE Transactions on Multimedia, 2017, 20(7): 1699-1711.
    [20]
    高涛, 刘梦尼, 陈婷, 等. 结合暗亮通道先验的远近景融合去雾算法[J]. 西安交通大学学报, 2021, 55(10): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm

    GAO Tao, LIU Mengni, CHEN Ting, et al. Near and far range fusion defogging algorithm combining dark and bright channel priori[J]. Journal of Xi'an Jiaotong University, 2021, 55(10): 78-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202110009.htm
    [21]
    Salazar-Colores S, Moya-Sanchez E U, Ramos-Arreguin J M, et al. Fast single image defogging with robust sky detection[J]. IEEE Access, 2020, 8: 149176-149189.
    [22]
    CHEN Z, OO B, TIAN Q. An improved dark channel prior image defogging algorithm based on wavelength compensation[J]. Earth Science Informatics, 2019, 12(4): 501-512
    [23]
    LU J, DONG C. DSP-based image real-time dehazing optimization for improved dark-channel prior algorithm[J]. Journal of Real-Time Image Processing, 2020, 17(5): 1675-1684.
    [24]
    陈书贞, 任占广, 练秋生. 基于改进暗通道和导向滤波的单幅图像去雾算法[J]. 自动化学报, 2016, 42(3): 455-465. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603011.htm

    CHEN Shuzhen, REN Zhanguang, LIAN Qiusheng. Single image defogging algorithm based on improved dark channel and guided filtering[J]. Journal of Automation, 2016, 42(3): 455-465. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201603011.htm
    [25]
    WANG M, ZHU F, BAI Y. An improved image blind deblurring based on dark channel prior[J]. Optoelectronics Letters, 2021, 17(1): 40-46.
    [26]
    LI Z, LI G, NIU B, et al. Sea cucumber image dehazing method by fusion of retinex and dark channel[J]. IFAC-Papers OnLine, 2018, 51(17): 796-801.
    [27]
    JU M, DING C, ZHANG D, et al. Gamma-correction-based visibility restoration for single hazy images[J]. IEEE Signal Processing Letters, 2018, 25(7): 1084-1088.
    [28]
    CAO N, LYU S, HOU M, et al. Restoration method of sootiness mural images based on dark channel prior and Retinex by bilateral filter[J]. Heritage Science, 2021, 9(1): 1-19.
  • Related Articles

    [1]SONG Shanshan, ZHAI Xuping. Improved Infrared Anomaly Target Detection Algorithm Based on Single Gaussian Model[J]. Infrared Technology , 2021, 43(9): 885-888,894.
    [2]WU Tianquan, GUO Jing, GOU Xiantai, HUANG Qinqin, ZHOU Weichao. Method of Detecting Substation Equipment in Infrared Images Based on Improved Gaussian Convolution Kernel[J]. Infrared Technology , 2021, 43(3): 230-236.
    [3]YU Xiaoming, LI Siying, SHI Shengnan. An Improved Algorithm for Moving Target Detection Using a Gaussian Mixture with Three-frame Difference[J]. Infrared Technology , 2019, 41(3): 256-261.
    [4]CHEN Jiali, ZHANG Zhiyong. Velocity Estimation of Precision Pointing Mechanisms Based on Adaptive Kalman Filter[J]. Infrared Technology , 2018, 40(4): 388-394.
    [5]FU Dong-mei, TANG Sheng-bo. Infrared Moving Object Detection Based on Improved Gaussian Mixture Model[J]. Infrared Technology , 2014, (8): 628-632.
    [6]XU Xiang-jun, WANG Sheng-peng, JI Qing-chun, LIU Dong-fang, QIAN Wei-dong, YU Jie, YAN Ya-jing. Insulator Infrared Image Recognition Method Based on Gaussian Scale-space and GHT[J]. Infrared Technology , 2014, (7): 596-599.
    [7]GAO Xiao-dan, WEI Wan-hua. An Adaptive Enhancement Algorithm Based on Gaussian Distribution for Infrared Image[J]. Infrared Technology , 2014, 36(5): 381-383.
    [8]Application of Gaussian Quadrics Fitting in the Infrared Point Targets Detection in Sky Background[J]. Infrared Technology , 2013, (10): 638-641.
    [9]CHEN Wei-zhen, ZHANG Chun-hua, ZHOU Xiao-dong. Study of Star-sky Image Background Characteristics Based on Local-histogram Gaussian Fitting Method[J]. Infrared Technology , 2008, 30(4): 230-233. DOI: 10.3969/j.issn.1001-8891.2008.04.012
    [10]CAO Zhan-hui, LI Yan-jun, ZHANG Ke, WU Pan-long. A Novel Linear Edge Extraction Method Based on Gaussian Function[J]. Infrared Technology , 2006, 28(4): 207-209. DOI: 10.3969/j.issn.1001-8891.2006.04.006
  • Cited by

    Periodical cited type(5)

    1. 戴皓升,孔明,姚为方,钱靖,马大卫,周健,吕文君,苏阳,李鲲. 燃煤电厂碳排放长期在线监测数据对比及应用分析. 电力科技与环保. 2025(01): 59-68 .
    2. 颜培宇,张海庆,张清,张振. 基于双通道检测技术的非分光红外CO_2传感器设计与研究. 仪表技术与传感器. 2024(04): 6-10 .
    3. 马建华,刘金锋,周永章,郑益军,陆可飞,林星雨,王汉雨,张灿. 面向地质封存及其泄漏风险评价的CO_2物联网在线监测. 地学前缘. 2024(04): 139-146 .
    4. 吴文杰. 非色散红外CO_2传感器温度补偿研究. 激光与红外. 2024(06): 935-942 .
    5. 王春光,李琳琳,王逸飞,代伟平. 油井H_2S及CO_2一体化传感器在线测量装置设计. 仪器仪表标准化与计量. 2024(06): 22-24 .

    Other cited types(2)

Catalog

    Article views (165) PDF downloads (76) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return