Citation: | LI Xiaofeng, HE Yanbin, XU Chuanping, LI Jinsha, ZHANG Qindong. Choice of European Super Second Generation Image Intensifier Technology and its Further Development[J]. Infrared Technology , 2022, 44(12): 1249-1263. |
[1] |
张敬贤, 李玉丹, 金伟其. 微光与红外成像技术[M]. 北京: 北京理工大学出版社, 1995: 29-35.
ZHANG Jingxian, LI Yudan, JIN Weiqi. Low-light-level and Infrared Imaging Technology[M]. Beijing: Beijing Institute of Technology Press, 1995: 29-35.
|
[2] |
周立伟, 刘玉岩. 目标探测与识别[M]. 北京: 北京理工大学出版社, 2002: 79-100.
ZHOU Liwei, LIU Yuyan. Object Detection and Origin[M]. Beijing: Beijing Institute of Technology Press, 2002: 79-100.
|
[3] |
程宏昌, 石峰, 李周奎, 等. 微光夜视器件划代方法初探[J]. 应用光学, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
CHENG Hongchang, SHI Feng, LI Zhoukui, et al. Preliminary study on distinguishment method of low-level-light night vision devices[J]. Journal of Applied Optics, 2021, 42(6): 1092-1101. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGX202106023.htm
|
[4] |
郭晖, 向世明, 田民强. 微光夜视技术发展动态评述[J]. 红外技术, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003
GUO Hui, XIANG Shiming, TIAN Minqiang. A review of development of low light level night vision technology[J]. Infrared Technology, 2013, 35(2): 63-68. http://hwjs.nvir.cn/article/id/hwjs201302003
|
[5] |
田金生. 低照度微光传感器的最新进展[J]. 红外技术, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
TIAN Jinsheng. New development of low level imaging sensor technology[J]. Infrared Technology, 2013, 35(9): 527-534. http://hwjs.nvir.cn/article/id/hwjs201309001
|
[6] |
Laprade B N, Reinhart S T, Wheeler M, et al. Low-noise-figure microchannel plate optimized for Gen III image intensification systems[C/OL]//SPIE of Electron Image Tubes and Image Intensifiers, 1990, 1243: https://doi.org/10.1117/12.19476.
|
[7] |
Feller W B. Low noise and conductively cooled microchannel plates[C]//Proc. of SPIE Electron Image Tubes and Image Intensifiers, 1990, 1243:doi: 10.1117/12.19475.
|
[8] |
Conti L, Barnstedt J, Hanke L, et al. MCP Detector Development for UV Space Missions[J]. Astrophysics and Space Science, 2018, 363(4): 63-71. DOI: 10.1007/s10509-018-3283-4
|
[9] |
周异松. 电真空成像器件及理论分析[M]. 北京: 国防工业出版社, 1989.
ZHOU Yisong. Electric Vacuum Imaging Device and Its Theoretical Analysis[M]. Beijing: National Defense Industry Press, 1989.
|
[10] |
向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 2006.
XIANG Shiming, NI Guoqiang. The Principle of Photoelectronic Imaging Device[M]. Beijing: National Defense Industry Press, 2006.
|
[11] |
常本康. 多碱光电阴极[M]. 北京: 兵器工业出版社, 2001.
CHANG Benkang. Multi-Alkali Photocathode[M]. Beijing: Ordnance Industry Press, 2001.
|
[12] |
李晓峰, 刘如彪, 赵学峰. 多碱阴极光电发射机理研究[J]. 光子学报, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
LI Xiaofeng, LIU Rubiao, ZHAO Xuefeng. Photoemission mechanism of multi-alkali cathode[J]. Acta Photonica Sinica, 2011, 40(9): 1438-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
|
[13] |
李晓峰, 陆强, 李莉, 等. 超二代像增强器多碱阴极膜厚测量研究[J]. 光子学报, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm
LI Xiaofeng, LU Qiang, LI Li. Thickness measurement of multi-alkali photocathode[J]. Acta Photonica Sinica, 2012, 41(11): 1377-1381. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201211023.htm
|
[14] |
李晓峰. 超二代像增强器多碱阴极光电发射特性研究[J]. 光子学报, 2013, 42(1): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301001.htm
LI Xiaofeng. Photoemission process study of multi-alkali photocathode in the super second generation image intensifier[J]. Acta Photonica Sinica, 2013, 42(1): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201301001.htm
|
[15] |
李晓峰, 杨文波, 王俊. 用光致荧光研究多碱阴极光电发射机理[J]. 光子学报, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
LI Xiaofeng, YANG Wenbo, WANG Jun. Photoemission mechanism of multi-alkali photocathode by photoluminescence[J]. Acta Photonica Sinica, 2012, 41(12): 1435-1440. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201212008.htm
|
[16] |
常本康. GaAs光电阴极[M]. 北京: 科学出版社, 2001.
CHANG Benkang. GaAs Photocathode[M]. Beijing: Science Press, 2001.
|
[17] |
常本康. GaAs基光电阴极[M]. 北京: 科学出版社, 2017.
CHANG Benkang. Photocathode Base on GaAs[M]. Beijing: Science Press, 2017.
|
[18] |
ZHANG Yijun, CHANG Benkang, YANG Zhi, et al. Distributuion of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy[J]. Chinese Physics B, 2009, 18(10): 4541-4546. DOI: 10.1088/1674-1056/18/10/074
|
[19] |
ZHAO Jing, CHANG Benkang, XIONG Yajuan, et al. Influence of the antireflection, window and active layers on optical properties of exponential-doping transmission-mode GaAs photocade modules[J]. Optics Communications, 2012, 285(5): 589-593.
|
[20] |
李晓峰, 张景文, 高宏凯, 等. 三代管MCP离子阻挡膜研究[J]. 光子学报, 2001, 30(12): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200112014.htm
LI Xiaofeng, ZHANG Jingwen, GAO Hongkai, et al. Ion barrier of MCP in the third generation image intensifier[J]. Acta Photonica Sinica, 2001, 30(12): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB200112014.htm
|
[21] |
杨晓军, 李丹, 乔凯, 等. 防离子反馈微通道板表面碳污染去除的试验研究[J]. 红外技术, 2020, 42(8): 747-751. http://hwjs.nvir.cn/article/id/hwjs202008007
YANG Xiaojun, LI Dan, QIAO Kai, et al. Experimental study of C pollution removal from microchannel plate with ion barrier film[J]. Infrared Technology, 2020, 42(8): 509-518. http://hwjs.nvir.cn/article/id/hwjs202008007
|
[22] |
Jan Van Spijker. Ion barrier membrane for use in a vacuum tube using electron multiplying, an electron multiplying structure for use in a vacuum tube using electron multiplying as well as a vacuum tube using electron multiplying provided with such an electron multiplying structure[P]. U. S. : 8, 471, 444B2[P]. [2013-01-25].
|
[23] |
Roaux E, Richard J C, Piaget C. Third-Generation Image Intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 71-75.
|
[24] |
Pollehn H K. Performance and reliability of third-generation image intensifier[J]. Advances in Electronics and Electron Physics, 1985, 64A: 61-69.
|
[25] |
Jacques Dupuy, Joost Schrijvers, Gerard Wolzak. The super second generation image intensifier[C/OL]//SPIE, 1989, 1072: 0014.
|
[26] |
Bosch L A, Boskma L. The Performance of DEP Super Generation Image Intensifier[C]//Proc. of SPIE, 1994, 2272: 110212.
|
[27] |
YAN Baojin, LIU Shulin, HENG Yuekun. Nano-oxide thin films deposited via atomic layer deposition on microchannel[J]. Nanoscale Research Letters, 2015, 10(1): 1-10.
|
[28] |
丛晓庆, 邱祥彪, 孙建宁, 等. 原子层沉积法制备微通道板发射层的特性[J]. 红外与激光工程, 2016, 45(9): 0916002.
CONG Xiaoqing, QIU Xiangbiao, SUN Jianning, et al. Properties of microchannel plate emission layer deposited by atomic layer deposition[J]. Infrared and Laser Engineering, 2016, 45(9): 1-10.
|
[29] |
Nutzel G. Image intensifier for night vision device[P]. U. S. : Patent 0, 886, 095B2, [2021-01-05].
|
[30] |
山东鑫茂奥耐特复合固体润滑工程技术有限公司. 一种金属表面超声波镶嵌纳米金刚石的方法[P]. 中国: CN201510283605, [2015-08-20].
Shandong Xingmao aonaite compound lubricating oil technology company. A method of ultrasonic embedding nano diamond on metal surface[P]. China: CN201510283605, [2015-08-20].
|
[31] |
李晓峰, 李廷涛, 曾进能, 等. 微通道板输入信号利用率提高研究[J]. 光子学报, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
LI Xiaofeng, LI Tingtao, ZENG Jinneng, et al. Study on the improvement of input signal utilization of MCP[J]. Acta Photonica Sinica, 2020, 49(3): 0325002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202003022.htm
|
[32] |
李丹, 朱宇峰, 赵慧民, 等. MCP噪声因子特性研究[J]. 红外技术, 2017, 39(11): 1066-1070. http://hwjs.nvir.cn/article/id/hwjs201711016
LI Dan, ZHU Yufeng, ZHAO Huimin, et al. Research on noise factor characteristic of micro-channel plate[J]. Infrared Technology, 2017, 39(11): 1066-1070. http://hwjs.nvir.cn/article/id/hwjs201711016
|
[33] |
李晓峰, 常乐, 李金沙, 等. 微通道板噪声因子与工作电压关系研究[J]. 光子学报, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
LI Xiaofeng, CHANG Le, LI Jinsha, et al. Study on the relationship between noise factor and working voltage of microchannel plate[J]. Acta Photonica Sinica, 2020, 49(7): 0725002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202007003.htm
|
[34] |
李晓峰, 张正君, 丛晓庆, 等. 微通道板结构参数对噪声因子的影响研究[J]. 光子学报, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
LI Xiaofeng, ZHANG Zhenjun, CONG Xiaoqing, et al. Influence of microchannel plate structure parameters on noise factor[J]. Acta Photonica Sinica, 2021, 50(5): 0225001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202104016.htm
|
[35] |
刘元震, 王仲春, 董亚强. 电子发射与光电阴极[M]. 北京: 北京理工大学出版社, 1995.
LIU Yuanzheng, WANG Zhongchun, DONG Yaqiang. Electron Emission and Photocathode[M]. Beijing: Beijing Science and Technology University Press, 1995.
|
[36] |
法国甫托尼公司. 具有改善的吸收率的半透明的光电阴极[P]. 中国: CN104781903A.
[2015-07-15]. Photonis France. Sem-transparent photocathode with improved absorption rate[P]. China: CN104781903A [2015-07-15].
|
[37] |
李晓峰, 常乐, 曾进能, 等. 微通道板分辨力提高研究[J]. 光子学报, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
LI Xiaofeng, CHANG Le, ZENG Jinneng, et al. Study on resolution improvement of microchannel plate[J]. Acta Photonica Sinica, 2019, 48(12): 1223002. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201912016.htm
|
[38] |
邱亚峰, 严武凌, 华桑暾. 基于电子追迹算法的微光像增强器分辨力研究[J]. 光子学报, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
QIU Yafeng, YAN Wuling, HUA Sangtun. Resolution research of low-light-level image intensifier based on electronic trajectory tracking[J]. Acta Photonica Sinica, 2020, 49(12): 1223003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202012003.htm
|
[39] |
李晓峰, 常乐, 赵恒, 等. 超二代与三代像增强器低照度分辨力比较研究[J]. 光子学报, 2021, 50(9): 0904003-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm
LI Xiaofeng, CHANG Le, ZHAO Heng, et al. Comparison of resolution between Super Gen. Ⅱ and Gen. Ⅲ image intensifier[J]. Acta Photonica Sinica, 2021, 50(9): 0904003-1. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB202109030.htm
|
[40] |
Hoenderken T H, Hagen C W, Nutzel G O, et al. Influence of the microchannel plate and anode gap parameters on the spatial resolution of an image intensifier[J]. Journal of Vaccum, Science and Technology, 2001, 19(30): 843-850.
|
[41] |
Nutzel G. Fiber optic phosphor screen comprising angular filter[P]. U. S. : 8, 933, 419B2 [2015-01-13].
|
[42] |
潘京生. 像增强器的迭代性能及其评价标准[J]. 红外技术, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
PAN Jingsheng. Image intensifier upgraded performance and evaluation standard[J]. Infrared Technology, 2020, 42(6): 509-518. http://hwjs.nvir.cn/article/id/hwjs202006001
|
[43] |
董煜辉, 黄丽书, 王俊, 等. 微光像增强器试验方法: WJ 2091-1992[S]. 北京: 中国标准出版社, 1992.
DONG Yuhui, HUANG Lishu, WANG Jun, et al. Test method of image intensifier: WJ 2091-1992[S]. Beijing: Standards Press of China, 1992.
|
[44] |
董煜辉, 黄丽书, 王俊, 等. 像增强器通用规范: GJB 2000A-2020 [S]. 北京: 中国标准出版社, 2020.
DONG Yuhui, HUANG Lishu, WANG Jun, et al. General specification of image intensifier: GJB 2000A-2020[S]. Beijing: Standards Press of China, 2020.
|
[45] |
李晓峰, 何雁彬, 常乐, 等. 超二代与三代像增强器性能的比较研究[J]. 红外技术, 2022, 44(8): 764-777. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d
LI Xiaofeng, HE Yanbin, CHANG Le, et al. Performance comparison between super second generation and third generation image intensifiers[J]. Infrared Technology, 2022, 44(8): 764-777. http://hwjs.nvir.cn/article/id/f450e48d-1281-422f-8ab5-d725f5a0ce3d
|
[46] |
周立伟. 关于微光像增强器的品质因数[J]. 红外与激光工程, 2004, 33(4): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200404001.htm
ZHOU Liwei. On quality factor of low light level image intensifier[J]. Infrared and Laser Engineering, 2004, 33(4): 331-337. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYJ200404001.htm
|
[1] | DU Peide, CHU Zhujun, ZENG Jinneng, ZHU Wenjin, ZHOU Shengtao, LI Xiaolu, LI Yaqing, ZUO Jianing. EMC Design and Implementation for Image Intensifiers[J]. Infrared Technology , 2023, 45(6): 658-662. |
[2] | FENG Danqing, GUO Xinda, BAI Xiaofeng, ZHANG Qin, DANG Xiaogang, ZHANG Shuli, YANG Shuning, LI Qi, HAN Kun. Effect of Luminance Gain on Image Quality of Third Generation Low-Light-Level Image Intensifier[J]. Infrared Technology , 2023, 45(2): 188-194. |
[3] | YAN Bo, NI Xiaobing, ZHI Qiang, LIU Jiayin, SONG Haihao, LI Mengyi. Local Bright-light Protection for Low-Light-Level Image Intensifier Based on Auto-gating Power Supply[J]. Infrared Technology , 2022, 44(9): 951-957. |
[4] | TANG Qin, YANG Zhuang, SONG Haitao, YE Hongwei, ZHANG Xingyue. Stress Analysis of the Plastic Shells of Image Intensifiers[J]. Infrared Technology , 2021, 43(5): 483-489. |
[5] | YAN Lei, SHI Feng, SHAN Cong, CHENG Hongchang, GUO Xin, LIU Hui, LUO Yang, ZHANG Xiaohui. Limiting Resolution of AlGaN Photocathode Image Intensifier Tube[J]. Infrared Technology , 2020, 42(8): 729-734. |
[6] | WANG Xiaonan, LI Wenjun, LI Jiaqi, ZHENG Yongjun. An Apparent Temperature Difference Generator for Performance Testing of Thermal Imagers[J]. Infrared Technology , 2018, 40(8): 749-753. |
[7] | YANG Ye, NI Xiaobing, YAN Bo, ZHI Qiang, LI Junguo. Study on the Relationship between Image Intensifier Cathode Pulse and Plate Brightness Stability[J]. Infrared Technology , 2018, 40(7): 691-694. |
[8] | NI Xiaobing, YANG Ye, YAN Bo, ZHI Qiang, LI Junguo. Research on Photocathode Protection Method of the Three-Generation Image Intensifier[J]. Infrared Technology , 2018, 40(5): 492-495. |
[9] | NI Xiaobing, YAN Bo, YANG Ye, YANG Shuning, ZHI Qiang, LI Junguo, YAO Ze, DENG Guangxu. Study of Image Intensifier SNR Based on Auto Gated Power Supply[J]. Infrared Technology , 2017, 39(3): 284-287. |
[10] | LUO Guan-ping, HE Kai-yuan, WANG Zhi-hong, TIAN Jin-sheng, YUAN Xiaopeng. The Development and Application of the Second Generation Image Intensifier Tubes[J]. Infrared Technology , 2000, 22(2): 7-10. DOI: 10.3969/j.issn.1001-8891.2000.02.002 |
1. |
宋海浩,延波,倪小兵,智强,李梦依,刘佳音,任莹楠,司可,张琳琳. 一种像增强器阴极高重频选通电路的设计. 应用光学. 2022(06): 1187-1195 .
![]() |